diff options
author | Travis CI <zmoelnig@travis-ci.umlaeute.mur.at> | 2021-03-27 22:56:33 +0000 |
---|---|---|
committer | Travis CI <zmoelnig@travis-ci.umlaeute.mur.at> | 2021-03-27 22:56:33 +0000 |
commit | 74120e8f072582c0754da39b489e5b81c393eb21 (patch) | |
tree | fd864741aba6a05b4a5b75a386ac4d40b11217dc /Gem/examples/13.recursion/04.binary_tree.pd | |
parent | c22fdadbf473ab85e24b6554c80135d980fb9243 (diff) |
Gem beb70a86ad03d4ac460a416f7ad2f3fd0127228d osx/i386osx/i386
built 'master:beb70a86ad03d4ac460a416f7ad2f3fd0127228d' for osx/i386
Diffstat (limited to 'Gem/examples/13.recursion/04.binary_tree.pd')
-rw-r--r-- | Gem/examples/13.recursion/04.binary_tree.pd | 168 |
1 files changed, 90 insertions, 78 deletions
diff --git a/Gem/examples/13.recursion/04.binary_tree.pd b/Gem/examples/13.recursion/04.binary_tree.pd index 01dcd99..89cf3d8 100644 --- a/Gem/examples/13.recursion/04.binary_tree.pd +++ b/Gem/examples/13.recursion/04.binary_tree.pd @@ -1,4 +1,4 @@ -#N canvas 6 61 602 516 10; +#N canvas 6 61 602 553 10; #X declare -lib Gem; #X obj 14 66 gemwin; #X obj 14 9 tgl 15 0 empty empty empty 17 7 0 10 -262144 -1 -1 0 1 @@ -9,92 +9,104 @@ #X text 170 17 A tutorial on recursion in Gem; #X text 170 37 (GPL) 2007 Claude Heiland-Allen <claude@mathr.co.uk> ; -#X obj 24 163 r \$0-recurse; -#X obj 68 133 v \$0-depth; -#X obj 14 113 t a b; -#X floatatom 91 96 5 0 0 2 max-depth - -; -#X obj 14 253 t a a; -#X obj 59 253 circle; -#X obj 14 223 separator; -#X obj 36 473 s \$0-recurse; -#X obj 14 353 t b a b; -#X obj 99 383 v \$0-depth; -#X obj 99 403 - 1; -#X obj 99 423 max 0; +#X obj 24 233 r \$0-recurse; +#X obj 88 213 v \$0-depth; +#X obj 14 193 t a b; +#X floatatom 111 176 5 0 17 2 max-depth - -; +#X obj 14 293 t a a; +#X obj 14 273 separator; +#X obj 36 533 s \$0-recurse; +#X obj 14 413 t b a b; #X obj 99 443 v \$0-depth; -#X obj 36 453 spigot; -#X obj 14 383 v \$0-depth; -#X obj 14 423 v \$0-depth; -#X obj 14 403 + 1; -#X obj 184 253 t a a; -#X obj 229 253 circle; -#X obj 206 473 s \$0-recurse; -#X obj 184 353 t b a b; -#X obj 269 383 v \$0-depth; -#X obj 269 403 - 1; -#X obj 269 423 max 0; +#X obj 99 463 - 1; +#X obj 99 483 max 0; +#X obj 116 533 v \$0-depth; +#X obj 36 513 spigot; +#X obj 14 443 v \$0-depth; +#X obj 14 483 v \$0-depth; +#X obj 14 463 + 1; +#X obj 184 293 t a a; +#X obj 206 533 s \$0-recurse; +#X obj 184 413 t b a b; #X obj 269 443 v \$0-depth; -#X obj 206 453 spigot; -#X obj 184 383 v \$0-depth; -#X obj 184 423 v \$0-depth; -#X obj 184 403 + 1; -#X obj 184 223 separator; -#X obj 14 183 t a a; -#X obj 184 303 translate 1.5 0 1 0; -#X obj 184 323 scale 0.5; -#X obj 14 323 scale 0.5; -#X obj 14 303 translate 1.5 0 1 0; -#X obj 14 283 rotate -30 0 0 1; -#X obj 184 283 rotate 30 0 0 1; -#X obj 68 113 f 4; -#X text 170 77 The simplest recursive branching structure is one that +#X obj 269 463 - 1; +#X obj 269 483 max 0; +#X obj 286 533 v \$0-depth; +#X obj 206 513 spigot; +#X obj 184 443 v \$0-depth; +#X obj 184 483 v \$0-depth; +#X obj 184 463 + 1; +#X obj 184 273 separator; +#X obj 14 253 t a a; +#X obj 184 363 translate 1.5 0 1 0; +#X obj 14 363 translate 1.5 0 1 0; +#X obj 14 343 rotate -30 0 0 1; +#X obj 184 343 rotate 30 0 0 1; +#X obj 88 193 f 4; +#X text 211 77 The simplest recursive branching structure is one that splits into two at each branch. Essentially what we are creating is a circle \, plus two transformed copies of the whole structure \, limited to a maximums depth of recursion.; -#X text 170 137 Be careful not to increase the max-depth too much: +#X text 211 137 Be careful not to increase the max-depth too much: the splitting at each recursion leads to an exponential increase in the number of circles to be drawn.; #X obj 497 15 declare -lib Gem; +#X obj 259 506 t a a; +#X obj 89 506 t a a; +#X obj 14 135 scale 0.4 0.4 1; +#X obj 14 383 scale 0.95 0.95 1; +#X obj 184 383 scale 0.95 0.95 1; +#X obj 259 316 circle; +#X obj 59 316 circle; +#X obj 59 293 color 1 0 0; +#X obj 259 293 color 0 0 1; +#X obj 14 114 translateXYZ 2 -1 0; #X connect 1 0 0 0; #X connect 2 0 0 0; #X connect 3 0 0 0; -#X connect 4 0 9 0; -#X connect 7 0 37 0; -#X connect 9 0 37 0; -#X connect 9 1 44 0; -#X connect 10 0 44 1; -#X connect 11 0 42 0; -#X connect 11 1 12 0; -#X connect 13 0 11 0; -#X connect 15 0 21 0; -#X connect 15 1 20 0; -#X connect 15 2 16 0; +#X connect 4 0 53 0; +#X connect 7 0 35 0; +#X connect 9 0 35 0; +#X connect 9 1 40 0; +#X connect 10 0 40 1; +#X connect 11 0 38 0; +#X connect 11 1 51 0; +#X connect 12 0 11 0; +#X connect 14 0 20 0; +#X connect 14 1 19 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; #X connect 16 0 17 0; -#X connect 17 0 18 0; -#X connect 18 0 19 0; -#X connect 18 0 20 1; -#X connect 20 0 14 0; -#X connect 21 0 23 0; -#X connect 23 0 22 0; -#X connect 24 0 43 0; -#X connect 24 1 25 0; -#X connect 27 0 33 0; -#X connect 27 1 32 0; -#X connect 27 2 28 0; -#X connect 28 0 29 0; -#X connect 29 0 30 0; -#X connect 30 0 31 0; -#X connect 30 0 32 1; -#X connect 32 0 26 0; -#X connect 33 0 35 0; -#X connect 35 0 34 0; -#X connect 36 0 24 0; -#X connect 37 0 13 0; -#X connect 37 1 36 0; -#X connect 38 0 39 0; -#X connect 39 0 27 0; -#X connect 40 0 15 0; -#X connect 41 0 40 0; -#X connect 42 0 41 0; -#X connect 43 0 38 0; -#X connect 44 0 8 0; +#X connect 17 0 45 0; +#X connect 19 0 13 0; +#X connect 20 0 22 0; +#X connect 22 0 21 0; +#X connect 23 0 39 0; +#X connect 23 1 52 0; +#X connect 25 0 31 0; +#X connect 25 1 30 0; +#X connect 25 2 26 0; +#X connect 26 0 27 0; +#X connect 27 0 28 0; +#X connect 28 0 44 0; +#X connect 30 0 24 0; +#X connect 31 0 33 0; +#X connect 33 0 32 0; +#X connect 34 0 23 0; +#X connect 35 0 12 0; +#X connect 35 1 34 0; +#X connect 36 0 48 0; +#X connect 37 0 47 0; +#X connect 38 0 37 0; +#X connect 39 0 36 0; +#X connect 40 0 8 0; +#X connect 44 0 30 1; +#X connect 44 1 29 0; +#X connect 45 0 19 1; +#X connect 45 1 18 0; +#X connect 46 0 9 0; +#X connect 47 0 14 0; +#X connect 48 0 25 0; +#X connect 51 0 50 0; +#X connect 52 0 49 0; +#X connect 53 0 46 0; |