Gem
Graphics Environment for Multimedia

[Ohannes m zmdlnig
forum::fir::umlaute

April 10, 2003

Contents

1 How to read this document

1.1 'Transcribing pd-patches 0L
2 openGL
2.1 meters, inches, fathoms,... L.

3 A first Gem-patch

3.1 [gemwin]
3.2 |[gemhead|ol
3.3 Let’s draw something
34 Colouringa Geo.
3.5 movingaround
3.6 turningaroundo oo
3.7 local coordinate system vs. world coordinate system
3.8 multiple objectso
3.9 independent objects
3.10 partly independent objects in a single gemlist
3.11 Prettifying the output
3.12 Antmation Lo
3.13 Exercise
4 Images
4.1 texturingo

5 Solutions for Exercises
5.1 Solar System (3.13)o

1 How to read this document

This document intends to help making some basic steps into Gem. It was
created because of the need for some structure of several workshops about
Gem, which i was dearly missing — resulting in (i guess) much confusion on
the participants’ side about what was going on.

I assume that the reader of this text has a fairly recent version of pd
already running on her computer. Furthermore I assume, that she is already
familiar with the basic concepts of building patches with pd, with the differ-
ences between object- and message-boxes and with the differences between
messages and signals.

1.1 Transcribing pd-patches

Since pd is a graphical programming language it is often hard to explain
patches within text-documents. Therefore I will try to to give a lot of
screenshots of working pd-patches, which can be used to reproduce things.
However, to refer to pd-objects within text, i will use following typesetting-
conventions:

[foo 1 2] | object (with arguments) fixed-font within square brackets
[foo z] | object (substitute arguments)

[foo bar(| message fixed-font within bracket /paranthese

[foo name(| message (with substitution)

The term “connecting object [foo] to object [bar]” means, connecting the
first outlet of [fool (that’s the leftmost little freckle on the lower edge of the
object) to the first inlet of [bar] (the leftmost little freckle on the upper edge
of the object). Tt does not mean, connecting any other outlet of [foo] to
any other inlet of [bar] (this would be stated explicitely). And it does not
mean, connecting any outlet of [bar] to any inlet of [fool. pd only allows
connecting outlets with inlets (not the other way round), thus you really have
to start at object [foo] and draw a line to object [bar].

2 openGL

TODO: description of 3D-scenes, hardware acceleration,. ..

Figure 1: connecting [foo] to [bar]

2.1 meters, inches, fathoms,. ..

Working with computer graphics it is quite common that the size of a graph-
ical element is given in pizels. The size of a pizel depends on your hardware
(monitor-resolution). This is fine, when working with bitmap-graphics (be-
cause bitmaps are based on pixels). However, if you are drawing an object
in a 3D-application, the actual size (on the screen) of this object will heavily
depend on the distance between the eye/camera and the object (objects far-
ther away being smaller), although the logical size of the object is constant.
Since vector-based applications (like Gem) describe objects in a logical way,
they do not store sizes in pixels (as units on the screen). Instead, lengths are
given in measures without any dimension. If a line is “1” unit long, you do
not know, whether this is one meter, one AU or one fathom. But you can be
sure, that logically this line is half as long as a line with a length of “2”.

3 A first Gem-patch

Gem-patches are pd-patches. They only use a special set of objects that are
not native to pd but are provided by Gem. These objects can be connected
to “normal” pd-objects, either being controlled by them or controlling them.
However, Gem-objects form a coherent unit: chances are, that you have to
use several Gem-objects together to get the desired result. Normally, it does
not make sense to use a single, isolated Gem-object: they are not standalone
objects.

3.1 [gemwin]

There is one object that really *must* exist in order to make Gem work .
This is [gemwin].

[gemwin] is a handle to a display context. This basically means, that it
provides a window (thus the name), where the Gem-scene is rendered to, the
“Gem-window”.

To create the Gem-window, you have to send a [create(message to
[gemwin]. To destroy this window, just send a [destroy(message.

As you might notice, that even though a Gem-window (named “Gem”)
is created, nothing is drawn to this window. Instead it will initially contain
what is behind the window (which is often quite irritating). Thus it holds
literally “nothing”, not even “black”.

To display something on the Gem-window, you have to turn on rendering.
This can be done, by simply sending a |1(to the [gemwin]. To turn off
rendering again, just send a |0(.

This most simple Gem-patch I can think of is shown in figure 2. It will
display a black window, as no objects are added to the Gem-scene.

Figure 2: the mandatory part of each Gem-patch

You can only turn rendering on, when there is an already created Gem-
window. If you destroy the Gem-window while rendering, rendering is turned

4

off automatically.

If you want to change the properties of the Gem-window, you can do so
by sending messages to the [gemwin]. For instance you could change the
title that is displayed in the title-bar, by sending [title title-symbol(.

You can also set the size ([dimen width height() and position ([offset
z y() of the Gem-window. Note that you have to send messages concerning
the window-appearance *before* actually creating the Gem-window. You
cannot resize or move an existing Gem-window with messages.

Note also, that it is not possible to resize the Gem-window under linuz by
simply using the window-manager, although this is possible under windos.

If you want to have a fullscreen output of Gem, you can send it a [fullscreen
1((before creating the “window”). Note that since this uses all the screen,
you might not be able to control your underlying pd any longer, for instance
you might not be able to close the Gem-window again (and leave fullscreen-
mode). You can disable fullscreen-mode by sending a [fullscreen 0(.

Until now, only one Gem-window can be used at one time (within the
context of one running instance of pd). You can put as many [gemwin]s into
your patch(es), but they all will affect the same Gem-window.

future-music: It is planned to support multiple independent Gem-windows
in future releases of Gem. These will not necessarily be windows on your
desktop, but could be the TV-output of your video-card, an IEEE1394-link
or a connection to a streaming-video-server to broadcast over the internet.

3.2 [gemhead]

While [gemwin] creates a window where the rendering is done, [gemhead]
is the object that connects a set of Gem-objects to this rendering context.

When doing audio-processing with pd, you have to connect all the signal-
objects you want to “hear” to the [dac™] somehow. All the Gem-objects
have to be connected to the [gemhead]. Contrary to the [dac™], the
[gemhead] is not the last object (the sink, where the final signal goes), but
the first object (the source, where the Gem-list starts).

Each rendering cycle (each time a frame is drawn — normally at a rate of
20 fps) the [gemhead] triggers an output, the so called Gem-list. This Gem-
list is a special kind of message, that is understood only by Gem-objects.

Generally, a Gem-object will “work” (eg: affect what is drawn
to the Gem-window) if and only if a Gem-list is sent to its first
(leftmost) inlet.

Very few Gem-objects have more (two) inlets for Gem-lists.
To stack several Gem-objects (to let their effects sum up), each Gem-
object has at least one (leftmost) outlet, that passes through the Gem-list.

3.3 Let’s draw something

The most basic Gem-objects are probably the so called Geos, which are
“primitive” shapes. These are drawables that tell the renderer to “draw a
certain shape”. One of these drawables is [square], that will (surprisingly)
draw a square.

Figure 3: drawing a square

You will notice, that the [square] has 2 inlets. The first one if for the
Gem-list. The remaining one can be used to set parameters. The (only)
parameter that can be set for [square] is the length of it’s edge. You can
set (and change) it by sending a number to the second inlet. Initially this is
“1”, unless this is overridden via a first argument, like in [square 2.1].

There are a lot of primitive Geos, like [rectangle a b], [triangle edgel,

[cube edgel, [circle diameter slices], [disk outerradius slices innerradius],
[cylinder diameter=height], [cone diameter=height], [sphere diameter].

3.4 Colouring a Geo

It is a fine thing to have Geos, but it soon becomes boring, if all you can
do is change their size. To do more sophisticated things, there are so called
Control-objects, that allow Geos to be moved, coloured,. ..

Generally, control-objects are called before Geos. This is because of the
openGL-architecture as a state machine.

Control-objects tell the renderer to change the appropriate state. For
instance, the [color] object will tell the renderer “to take the brush with
color 2’. Everything that is drawn afterwards will be coloured with z, until
another [color] object resets the colour of the renderer.

You have to pass the colour you want for painting to [color] as sets of
Red/Green/Blue values, each ranging between 0 and 1. This can be done
by giving initial arguments: [color red greem bluel] If you don’t specify
any arguments, 1 1 1 is assumed, indicating “white”. To change the colour
during runtime, you can send a list of the values (an rgb-triplet) to the second
inlet of [color].

] GEM Bl =i =]

lgemhead E 10 green
?.5 0.5 0.5 E grey

color 1 1 0

cube

Figure 4: colouring a Geo

An alternative is [colorRGB] which allows to set the values for each
colour-component separately via float-inlets.

3.5 moving around

When connecting a Geo to [gemhead], it is drawn in the middle of the
screen. Each Geo has it’s pivot point which is the centroid of the shape for
simple shapes. (And a rather arbitrary but hopefully intuitive point for more
complex shapes). When the renderer is told to draw a Geo, it will place the
pivot-point of the Geo on the origin of the ordinates of the 3D-world. The
“camera” that takes the pictures that are the display in the Gem-window,
is aligned to focus on the “world-origin” of the 3D-scene. Thus all the Geos
appear in the center of the screen. We can move around the objects (the
Geos, not the pd-objects) with [translate] resp. [translateXYZ].

[translateXYZ transX transY transZ] takes 3 arguments as the initial
translation in the direction of the 3 axis X (from left to right), Y (from
below to up) and Z (from in front of the screen into the screen). The partial
translations can also be set via numbers to the 3 right inlets.

[translate factor vecX wecY wecZ] the direction-vector vecX vecY vecZ
is scaled by factor to get the translation. Thus you can specify the direction
of the translation (third inlet) indendently from the amount of translation
(second inlet).

=] GEM E=r=]

gemhead Em

T

translate 0 2 1 0 —|

Figure 5: translation of a Geo

3.6 turning around

Any Geo can be rotated around it’s pivot point.

[rotateXYZ rotX rotY rotZl rotates the Geo, firstly around the X-axis
by rotX°, then around the Y-axis by rotY® and finally around the Z-axis by
rotZ°.

[rotateXYZ amount vecX wecY wecZ] rotatesthe Geo, by amount® around
the vector specified by the direction-vector vecX vecY vecZ.

3.7 local coordinate system vs. world coordinate sys-
tem

[translate] ([translateXYZ]) resp. [rotate] ([rotateXYZ]) are applied
to the so called local coordinate system rather than the world coordinate sys-
tem. A translate translates the local coordinate system by a certain amount,
a rotate rotates the whole coordinate system. This means that the order of
stacked translate and rotate transformations is very important.

8

[GEM Bl =i =]

T

rotateXYZ 0 45 10 _]

sphere

Figure 6: rotating a Geo

Example: Assume a cube, that is translated first and afterwards rotated.
If the rotation amount is now changed, the result will be a cube that is
rotating around it’s (pivot-)axis at a fixed position. If the transformations
are swapped (rotating first and afterwards translating), changing the rotation
amount will result in a cube, that is rotating around the origin of the scene.
(see patch at fig.7 and Gem-output at fig.8)

This behaviour becomes easily understandable when considering “everyday
local coordinate systems”. For instance, assume that you are standing at a
spot X looking straight forward. Your destination place will then heavily
depend on whether you turn right by 90° and walk 10 steps ahead or walk
10 steps ahead first and then turn right by 90°.

gemhead gemhead
translatexyZ 2 2 0 —| [@

translateXYz 2 -2 0 —|

[rotateXYz

square 0.5 square 0.5

Figure 7: the importance of transformation-ordering

Figure 8: translate before rotate results in a Geo that rotates around it’s own
axis (lilac). rotate before translate produces a Geo that rotates around the
origin. (green)

3.8 multiple objects

You can put multiple Geos into a gemlist. When doing transformations (like
[rotatel) in this gemlist, each object that is “below” this transformation
will be affected by it. Objects that are “above” the transformation, will not
be affected by it.

and cube

EotateXYZ 000 —| = GEM EEaEY

color 0 0 1

EranslateXYZ 2 -275 0 —| .

] rotate only
m m the cube

Figure 9: multiple Geos in one gemlist

This is often very convenient, as it allows a hierarchic description of 3D-
scenes. Objects that are at the beginning of the gemlist are higher in hier-
archy than objects below them. Lower object are considered to be “parts”
of higher objects — like your fingers are part of your hand: if you move your
hand, the fingers are also moved.

10

3.9 independent objects

Sometimes you want to control Geos independently of each other. Then you
might not want to put them into the same gemlist. Just start a new gemlist
with another [gemhead]. Gem-objects that are “childs” (below) different
[gemhead]s, do not interfere with each other. (see fig.10)

A GEM E=ir=]

|1|::ranslateXYz -2°0 0 —| lEranslateXYZ 210 —|
F (] |
EotateXYZ 0 0 —| EotateXYz 0 —| .

(=]

Figure 10: Geos in multiple gemlists

3.10 partly independent objects in a single gemlist

Sometimes you want partly independent control over Gem-objects. For in-
stance if you wanted to model a human body, you might want to move and
turn the whole body (with all parts like the head being transformed too) and
want to be able to turn the head and rise the arm independently. To split a
gemlist into independent sub-gemlists you can use the object [separator].

Everything below the [separator] is decoupled from other sub-gemlists
under other [separator]s. (see fig.12)

3.11 Prettifying the output

As you might have seen the Geos look quite ugly since you cannot distinguish
between different sides of an object. To prettify the rendering we can add
some lighting of the scene.

To make use of lighting, we have to put some light-sources into our scene
first.

[world_light] is used as an infinitely far away light source (like the sun).
Thus you can only specify the direction of the light by rotating the [world_light].

11

[x] V Cl=si=]

separator

translatexYzZ [-270 0 —|

translatexYz [3° T 0 —|

\
\
E°tatexyz 000 —| EotateXYZ 000 —|

LS S
color 0 0 1 Solor 10 0

draw line

Figure 11: partly independent Geos in a single gemlist

[1ight] is a point-source that can be placed somewhere via translation
and rotation.

For positioning a light-source you can send a [debug 1(to the light-source,
which will display a small cone that represents the light-source.

turning on/off the light: Positioning light-sources is not enough to turn
lighting on. Instead you have to turn it on (or off) explicitely. This can be
done by sending a [1ighting 1((or [1ighting 0() to the [gemwin]. Note
that when turning lighting on without having any light-sources, your scene
will pitch-black.

3.12 Animation

Gem itself has no possibilities to animate things. However, you can control
the appearance of each frame with pd-logic.

12

gemhead m

@) gemhead rotate 0 11

Eighting 1 E (b) World_light colorRGB 1

i

| v Bl=ra]l | v E=r=]

@

Figure 12: lighting a scene: (a) unlit, (b) lit

13

lighting 1 E

arrayl

lworld_light

sphere 1.5

‘translateXxyz 1 0 0

1

color 1 0 0

EotateXYZ 90 0 0

EcaleXYZ 0.2 0.2 1

1

cylinder 1.5

B3 GEM |EIEEES

Figure 13: animating things in Gem

tabread arrayl

.538

3.13 FEzxercise

Do some exercise: Build a model of the solar systems with following astro-
nomic atoms:

e Sol

Mercury
e Venus
o Terra
e Luna

Assume arbitrary (“good-looking”) sizes of planets/moons/stars. Use circular
paths. Animate the whole thing (with arbitrary speeds).

15

4 Images

To display images, Gem has several objects that can be used as “image
sources”. These include image-loaders for JPEG/TIFF, movie-loaders and
live-video sources (camera input). Generally all image-related object start
with “[pix_” followed by something that describes the functionality.

[pix_image] is the simplest image-source. It will load an image into RAM.
You can specify the filename of the image either as a first argument, or by
sending a [open filename(to the object.

Ed GEM [EESEr|

(gemhead

ix_image pics/fractal.JPG

[3]

Figure 14: drawing an image

The simplest way to display an image is using [pix_draw], which will
plot the image in it’s original size centered onto the Gem-window. If the
image is bigger than then the Gem-window, it won’t be displayed completely.
[pix_draw] is normally not supported by hardware-accelerated graphics-
cards (which makes it very slow generally) and i highly recommend not to
use it. It is just the easiest way to draw an image onto the screen, that’s why
it is used here.

4.1 texturing

GEM is an openGL-application. openGL-applications normally do not draw
images directly (like with [pix_draw]). Instead images are used as textures
on the Geos. You can think of texturing as putting a wallpaper on the Geo.

[pix_texture] is used for applying a texture. This means that the image
is uploaded onto the memory of the graphics-card. Each Geo that is drawn
after uploading the texture in the same gemlist will have this texture applied.

16

Note: hopefully [pix_texture] and [pix_texture2] will merge some-
time.

rotateXYz 25 25 0

I 3 % FEArY]

[Pix_image pics/fractal.JPG

[pix_texture

E%anslateXYz 1-T1 _]

Figure 15: texturing an image

Unfortunately openGL only supports textures the width (and height) of
which are powers of 2 (like 512x256 pixels). If you try to apply a “wrong
sized” image as a texture with [pix_texture] you will not see anything
(like not-texturing at all).

To overcome this, there is the [pix_texture2] object, which allows im-
ages of any size (like 320x240 pixels) to be textured on Geos.!

lon macOS-X any Geos are supported, on linux and windows you might experience
weird results with “complex” Geos (like [sphere]).

17

5 Solutions for Exercises

5.1 Solar System (3.13)

lgemhead

world light

Eighting 1 E

Sun

Mercury

gemhead

rotateXYz

EranslateXYz 200

EranslateXYz 100

1

] Golor 0 0.7 0.5
Eolor 08040 —| Eo - —|

sphere 0.1

sphere 0.2

EranslateXYZ 300 —|

Eranslatexyz 0.500 —|

Eolor 0.5 0.5 1 —|
sphere 0.1

