From d056668887fde2dd2a784ef3507ec35e98131439 Mon Sep 17 00:00:00 2001 From: "N.N." Date: Wed, 2 Aug 2006 14:02:28 +0000 Subject: no message svn path=/trunk/externals/iem/iem_adaptfilt/; revision=5455 --- src/sigNLMSCC.c | 390 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 390 insertions(+) create mode 100644 src/sigNLMSCC.c (limited to 'src/sigNLMSCC.c') diff --git a/src/sigNLMSCC.c b/src/sigNLMSCC.c new file mode 100644 index 0000000..553e595 --- /dev/null +++ b/src/sigNLMSCC.c @@ -0,0 +1,390 @@ +/* For information on usage and redistribution, and for a DISCLAIMER OF ALL +* WARRANTIES, see the file, "LICENSE.txt," in this distribution. + +NLMSCC normalized LMS algorithm with coefficient constraints +lib iem_adaptfilt written by Markus Noisternig & Thomas Musil +noisternig_AT_iem.at; musil_AT_iem.at +(c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */ + +#ifdef NT +#pragma warning( disable : 4244 ) +#pragma warning( disable : 4305 ) +#endif + + +#include "m_pd.h" +#include "iemlib.h" +#include +#include +#include + + +/* ----------------------- NLMSCC~ ------------------------------ */ +/* -- Normalized Least Mean Square (linear adaptive FIR-filter) -- */ +/* -- with Coefficient Constraint +/* -- first input: reference signal -- */ +/* -- second input: desired signal -- */ +/* -- -- */ +/* for further information on adaptive filter design we refer to */ +/* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */ +/* [2] Benesty, "Adaptive Signal Processing", Springer */ +/* */ + + +typedef struct sigNLMSCC +{ + t_object x_obj; + t_symbol *x_w_array_sym_name; + t_float *x_w_array_mem_beg; + t_symbol *x_wmin_array_sym_name; + t_float *x_wmin_array_mem_beg; + t_symbol *x_wmax_array_sym_name; + t_float *x_wmax_array_mem_beg; + t_float *x_io_ptr_beg[4];// memory: 2 sig-in and 2 sig-out vectors + t_float *x_in_hist;// start point double buffer for sig-in history + t_int x_rw_index;// read-write-index + t_int x_n_order;// order of filter + t_int x_update;// 2^n rounded value, downsampling of update speed + t_float x_beta;// learn rate [0 .. 2] + t_float x_gamma;// regularization + t_outlet *x_out_clipping_bang; + t_clock *x_clock; + t_float x_msi; +} t_sigNLMSCC; + +t_class *sigNLMSCC_class; + +static void sigNLMSCC_tick(t_sigNLMSCC *x) +{ + outlet_bang(x->x_out_clipping_bang); +} + +static t_float *sigNLMSCC_check_array(t_symbol *array_sym_name, t_int length) +{ + t_int n_points; + t_garray *a; + t_float *vec; + + if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class))) + { + error("%s: no such array for NLMSCC~", array_sym_name->s_name); + return((t_float *)0); + } + else if(!garray_getfloatarray(a, &n_points, &vec)) + { + error("%s: bad template for NLMSCC~", array_sym_name->s_name); + return((t_float *)0); + } + else if(n_points < length) + { + error("%s: bad array-size for NLMSCC~: %d", array_sym_name->s_name, n_points); + return((t_float *)0); + } + else + { + return(vec); + } +} + +static void sigNLMSCC_beta(t_sigNLMSCC *x, t_floatarg f) // learn rate +{ + if(f < 0.0f) + f = 0.0f; + if(f > 2.0f) + f = 2.0f; + + x->x_beta = f; +} + +static void sigNLMSCC_gamma(t_sigNLMSCC *x, t_floatarg f) // regularization factor (dither) +{ + if(f < 0.0f) + f = 0.0f; + if(f > 1.0f) + f = 1.0f; + + x->x_gamma = f; +} + + +static void sigNLMSCC_update(t_sigNLMSCC *x, t_floatarg f) // downsample of learn-rate +{ + t_int i=1, u = (t_int)f; + + if(u < 0) + u = 0; + else + { + while(i <= u) // convert u for 2^N + i *= 2; // round downwards + i /= 2; + u = i; + } + x->x_update = u; +} + +/* ============== DSP ======================= */ + +static t_int *sigNLMSCC_perform_zero(t_int *w) +{ + t_sigNLMSCC *x = (t_sigNLMSCC *)(w[1]); + t_int n = (t_int)(w[2]); + + t_float **io = x->x_io_ptr_beg; + t_float *out; + t_int i, j; + + for(j=0; j<2; j++)/* output-vector-row */ + { + out = io[j+2]; + for(i=0; ix_n_order; /* filter-order */ + t_int rw_index = x->x_rw_index; + t_float *in = x->x_io_ptr_beg[0];// first sig in + t_float *desired_in = x->x_io_ptr_beg[1], din;// second sig in + t_float *filt_out = x->x_io_ptr_beg[2];// first sig out + t_float *err_out = x->x_io_ptr_beg[3], eout;// second sig out + t_float *write_in_hist1 = x->x_in_hist; + t_float *write_in_hist2 = write_in_hist1+n_order; + t_float *read_in_hist = write_in_hist2; + t_float *w_filt_coeff = x->x_w_array_mem_beg; + t_float *wmin_filt_coeff = x->x_wmin_array_mem_beg; + t_float *wmax_filt_coeff = x->x_wmax_array_mem_beg; + t_float my, my_err, sum; + t_float beta = x->x_beta; + t_float gamma = x->x_gamma; + t_int i, j, update_counter; + t_int update = x->x_update; + t_int ord8=n_order&0xfffffff8; + t_int ord_residual=n_order&0x7; + t_int clipped = 0; + + if(!w_filt_coeff) + goto sigNLMSCCperfzero;// this is Musil/Miller style + if(!wmin_filt_coeff) + goto sigNLMSCCperfzero; + if(!wmax_filt_coeff) + goto sigNLMSCCperfzero;// if not constrained, perform zero + + for(i=0, update_counter=0; ix_w_array_mem_beg; // Musil's special convolution buffer struct + read_in_hist = &write_in_hist2[rw_index]; + for(j=0; j= update) + { + update_counter = 0; + + sum = 0.0f;// calculate energy for last n-order samples in filter + read_in_hist = &write_in_hist2[rw_index]; + for(j=0; jx_w_array_mem_beg; // coefficient constraints + wmin_filt_coeff = x->x_wmin_array_mem_beg; + wmax_filt_coeff = x->x_wmax_array_mem_beg; + read_in_hist = &write_in_hist2[rw_index]; + for(j=0; j wmax_filt_coeff[j]) + { + w_filt_coeff[j] = wmax_filt_coeff[j]; + clipped = 1; + } + else if(w_filt_coeff[j] < wmin_filt_coeff[j]) + { + w_filt_coeff[j] = wmin_filt_coeff[j]; + clipped = 1; + } + } + } + } + rw_index++; + if(rw_index >= n_order) + rw_index -= n_order; + } + + x->x_rw_index = rw_index; // back to start + + if(clipped) + clock_delay(x->x_clock, 0); + return(w+3); + +sigNLMSCCperfzero: + + while(n--) + { + *filt_out++ = 0.0f; + *err_out++ = 0.0f; + } + return(w+3); +} + +static void sigNLMSCC_dsp(t_sigNLMSCC *x, t_signal **sp) +{ + t_int i, n = sp[0]->s_n; + + for(i=0; i<4; i++) // store io_vec + x->x_io_ptr_beg[i] = sp[i]->s_vec; + + x->x_w_array_mem_beg = sigNLMSCC_check_array(x->x_w_array_sym_name, x->x_n_order); + x->x_wmin_array_mem_beg = sigNLMSCC_check_array(x->x_wmin_array_sym_name, x->x_n_order); + x->x_wmax_array_mem_beg = sigNLMSCC_check_array(x->x_wmax_array_sym_name, x->x_n_order); + + if(!(x->x_w_array_mem_beg && x->x_wmin_array_mem_beg && x->x_wmax_array_mem_beg)) + dsp_add(sigNLMSCC_perform_zero, 2, x, n); + else + dsp_add(sigNLMSCC_perform, 2, x, n); +} + + +/* setup/setdown things */ + +static void sigNLMSCC_free(t_sigNLMSCC *x) +{ + + freebytes(x->x_in_hist, 2*x->x_n_order*sizeof(t_float)); + + clock_free(x->x_clock); +} + +static void *sigNLMSCC_new(t_symbol *s, t_int argc, t_atom *argv) +{ + t_sigNLMSCC *x = (t_sigNLMSCC *)pd_new(sigNLMSCC_class); + t_int i, n_order=39; + t_symbol *w_name; + t_symbol *wmin_name; + t_symbol *wmax_name; + t_float beta=0.1f; + t_float gamma=0.00001f; + + if((argc >= 6) && + IS_A_FLOAT(argv,0) && //IS_A_FLOAT/SYMBOL from iemlib.h + IS_A_FLOAT(argv,1) && + IS_A_FLOAT(argv,2) && + IS_A_SYMBOL(argv,3) && + IS_A_SYMBOL(argv,4) && + IS_A_SYMBOL(argv,5)) + { + n_order = (t_int)atom_getintarg(0, argc, argv); + beta = (t_float)atom_getfloatarg(1, argc, argv); + gamma = (t_float)atom_getfloatarg(2, argc, argv); + w_name = (t_symbol *)atom_getsymbolarg(3, argc, argv); + wmin_name = (t_symbol *)atom_getsymbolarg(4, argc, argv); + wmax_name = (t_symbol *)atom_getsymbolarg(5, argc, argv); + + if(beta < 0.0f) + beta = 0.0f; + if(beta > 2.0f) + beta = 2.0f; + + if(gamma < 0.0f) + gamma = 0.0f; + if(gamma > 1.0f) + gamma = 1.0f; + + if(n_order < 2) + n_order = 2; + if(n_order > 11111) + n_order = 11111; + + inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal); + outlet_new(&x->x_obj, &s_signal); + outlet_new(&x->x_obj, &s_signal); + x->x_out_clipping_bang = outlet_new(&x->x_obj, &s_bang); + + x->x_msi = 0; + x->x_n_order = n_order; + x->x_update = 0; + x->x_beta = beta; + x->x_gamma = gamma; + // 2 times in and one time desired_in memory allocation (history) + x->x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float)); + + // table-symbols will be linked to their memory in future (dsp_routine) + x->x_w_array_sym_name = gensym(w_name->s_name); + x->x_w_array_mem_beg = (t_float *)0; + x->x_wmin_array_sym_name = gensym(wmin_name->s_name); + x->x_wmin_array_mem_beg = (t_float *)0; + x->x_wmax_array_sym_name = gensym(wmax_name->s_name); + x->x_wmax_array_mem_beg = (t_float *)0; + + x->x_clock = clock_new(x, (t_method)sigNLMSCC_tick); + + return(x); + } + else + { + post("NLMSCC~-ERROR: need 3 float- + 3 symbol-arguments:"); + post(" order_of_filter + learnrate_beta + security_value + array_name_taps + array_name_tap_min + array_name_tap_max"); + return(0); + } +} + +void sigNLMSCC_setup(void) +{ + sigNLMSCC_class = class_new(gensym("NLMSCC~"), (t_newmethod)sigNLMSCC_new, (t_method)sigNLMSCC_free, + sizeof(t_sigNLMSCC), 0, A_GIMME, 0); + CLASS_MAINSIGNALIN(sigNLMSCC_class, t_sigNLMSCC, x_msi); + class_addmethod(sigNLMSCC_class, (t_method)sigNLMSCC_dsp, gensym("dsp"), 0); + class_addmethod(sigNLMSCC_class, (t_method)sigNLMSCC_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N) + class_addmethod(sigNLMSCC_class, (t_method)sigNLMSCC_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate + class_addmethod(sigNLMSCC_class, (t_method)sigNLMSCC_gamma, gensym("gamma"), A_FLOAT, 0); // method: dithering noise related to signal + class_sethelpsymbol(sigNLMSCC_class, gensym("iemhelp2/NLMSCC~")); +} -- cgit v1.2.1