/* For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. NLMS normalized least mean square (LMS) algorithm lib iem_adaptfilt written by Markus Noisternig & Thomas Musil noisternig_AT_iem.at; musil_AT_iem.at (c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */ #ifdef NT #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif #include "m_pd.h" #include "iemlib.h" #include #include #include /* ----------------------- NLMSerr_in~ ------------------------------ */ /* -- Normalized Least Mean Square (linear adaptive FIR-filter) -- */ /* -- first input: reference signal -- */ /* -- second input: desired signal -- */ /* -- the difference to NLMS~ is: we have only one ERROR input instead of desired in minus filter out -- */ /* -- that means there is no feedback -- */ /* for further information on adaptive filter design we refer to */ /* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */ /* [2] Benesty, "Adaptive Signal Processing", Springer */ typedef struct NLMSerr_in_tilde { t_object x_obj; t_symbol *x_w_array_sym_name; t_float *x_w_array_mem_beg; t_float *x_in_hist;// start point double buffer for sig-in history t_int x_rw_index;// read-write-index t_int x_n_order;// order of filter t_int x_update;// 2^n rounded value, downsampling of update speed t_float x_beta;// learn rate [0 .. 2] t_float x_gamma;// regularization t_float x_sig_in2; } t_NLMSerr_in_tilde; t_class *NLMSerr_in_tilde_class; static t_float *NLMSerr_in_tilde_check_array(t_symbol *array_sym_name, t_int length) { int n_points; t_garray *a; t_float *vec; if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class))) { error("%s: no such array for NLMSerr_in~", array_sym_name->s_name); return((t_float *)0); } else if(!garray_getfloatarray(a, &n_points, &vec)) { error("%s: bad template for NLMSerr_in~", array_sym_name->s_name); return((t_float *)0); } else if(n_points < length) { error("%s: bad array-size for NLMSerr_in~: %d", array_sym_name->s_name, n_points); return((t_float *)0); } else { return(vec); } } static void NLMSerr_in_tilde_beta(t_NLMSerr_in_tilde *x, t_floatarg f) // learn rate { if(f < 0.0f) f = 0.0f; if(f > 2.0f) f = 2.0f; x->x_beta = f; } static void NLMSerr_in_tilde_gamma(t_NLMSerr_in_tilde *x, t_floatarg f) // regularization factor (dither) { if(f < 0.0f) f = 0.0f; if(f > 1.0f) f = 1.0f; x->x_gamma = f; } static void NLMSerr_in_tilde_update(t_NLMSerr_in_tilde *x, t_floatarg f) // downsample learn-rate { t_int i=1, u = (t_int)f; if(u < 0) u = 0; else { while(i <= u) // convert u for 2^N i *= 2; // round downwards i /= 2; u = i; } x->x_update = u; } /* ============== DSP ======================= */ static t_int *NLMSerr_in_tilde_perform_zero(t_int *w) { t_NLMSerr_in_tilde *x = (t_NLMSerr_in_tilde *)(w[1]); t_int n = (t_int)(w[2]); t_float **io = x->x_io_ptr_beg; t_float *out; t_int i; out = io[2]; for(i=0; ix_n_order; /* number of filter-order */ t_int rw_index = x->x_rw_index; t_float *filt_in = (t_float *)(w[1]);// first sig in t_float *err_in = (t_float *)(w[2]);// second sig in t_float *filt_out = (t_float *)(w[3]);// first sig out t_float *write_in_hist1 = x->x_in_hist; t_float *write_in_hist2 = write_in_hist1+n_order; t_float *read_in_hist = write_in_hist2; t_float *w_filt_coeff = x->x_w_array_mem_beg; t_float my, my_err, sum, errin; t_float beta = x->x_beta; t_float gamma = x->x_gamma; t_int i, j, update_counter; t_int update = x->x_update; t_int ord8=n_order&0xfffffff8; t_int ord_residual=n_order&0x7; if(!w_filt_coeff) goto NLMSerr_in_tildeperfzero;// this is quick&dirty Musil/Miller style for(i=0, update_counter=0; ix_w_array_mem_beg; // Musil's special convolution buffer struct read_in_hist = &write_in_hist2[rw_index]; for(j=0; j= update) { update_counter = 0; sum = 0.0f;// calculate energy for last n-order samples in filter read_in_hist = &write_in_hist2[rw_index]; for(j=0; jx_w_array_mem_beg; // coefficient constraints read_in_hist = &write_in_hist2[rw_index]; for(j=0; j= n_order) rw_index -= n_order; } x->x_rw_index = rw_index; // back to start return(w+6); NLMSerr_in_tildeperfzero: while(n--) { *filt_out++ = 0.0f; } return(w+6); } static void NLMSerr_in_tilde_dsp(t_NLMSerr_in_tilde *x, t_signal **sp) { x->x_w_array_mem_beg = NLMSerr_in_tilde_check_array(x->x_w_array_sym_name, x->x_n_order); if(!x->x_w_array_mem_beg) dsp_add(NLMSerr_in_tilde_perform_zero, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, x, sp[0]->s_n); else dsp_add(NLMSerr_in_tilde_perform, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, x, sp[0]->s_n); } /* setup/setdown things */ static void NLMSerr_in_tilde_free(t_NLMSerr_in_tilde *x) { freebytes(x->x_in_hist, 2*x->x_n_order*sizeof(t_float)); } static void *NLMSerr_in_tilde_new(t_symbol *s, t_int argc, t_atom *argv) { t_NLMSerr_in_tilde *x = (t_NLMSerr_in_tilde *)pd_new(NLMSerr_in_tilde_class); t_int i, n_order=39; t_symbol *w_name; t_float beta=0.1f; t_float gamma=0.00001f; if((argc >= 4) && IS_A_FLOAT(argv,0) && //IS_A_FLOAT/SYMBOL from iemlib.h IS_A_FLOAT(argv,1) && IS_A_FLOAT(argv,2) && IS_A_SYMBOL(argv,3)) { n_order = (t_int)atom_getintarg(0, argc, argv); beta = (t_float)atom_getfloatarg(1, argc, argv); gamma = (t_float)atom_getfloatarg(2, argc, argv); w_name = (t_symbol *)atom_getsymbolarg(3, argc, argv); if(beta < 0.0f) beta = 0.0f; if(beta > 2.0f) beta = 2.0f; if(gamma < 0.0f) gamma = 0.0f; if(gamma > 1.0f) gamma = 1.0f; if(n_order < 2) n_order = 2; if(n_order > 1111111) n_order = 1111111; inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal); outlet_new(&x->x_obj, &s_signal); x->x_sig_in2 = 0; x->x_n_order = n_order; x->x_update = 0; x->x_beta = beta; x->x_gamma = gamma; // 2 times in and one time err_in memory allocation (history) x->x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float)); // table-symbols will be linked to their memory in future (dsp_routine) x->x_w_array_sym_name = gensym(w_name->s_name); x->x_w_array_mem_beg = (t_float *)0; return(x); } else { post("NLMSerr_in~-ERROR: need 3 float- + 1 symbol-arguments:"); post(" order_of_filter + learnrate_beta + security_value + array_name_taps"); return(0); } } void NLMSerr_in_tilde_setup(void) { NLMSerr_in_tilde_class = class_new(gensym("NLMSerr_in~"), (t_newmethod)NLMSerr_in_tilde_new, (t_method)NLMSerr_in_tilde_free, sizeof(t_NLMSerr_in_tilde), 0, A_GIMME, 0); CLASS_MAINSIGNALIN(NLMSerr_in_tilde_class, t_NLMSerr_in_tilde, x_sig_in2); class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_dsp, gensym("dsp"), 0); class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N) class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_gamma, gensym("gamma"), A_FLOAT, 0); // method: dithering noise related to signal }