/* For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. NLMS normalized least mean square (LMS) algorithm lib iem_adaptfilt written by Markus Noisternig & Thomas Musil noisternig_AT_iem.at; musil_AT_iem.at (c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */ #include "m_pd.h" #include "iemlib.h" #include #include #include /* ----------------------- NLMSerr_in~ ------------------------------ */ /* -- Normalized Least Mean Square (linear adaptive FIR-filter) -- */ /* -- first input: reference signal -- */ /* -- second input: desired signal -- */ /* -- the difference to NLMS~ is: we have only one ERROR input instead of desired in minus filter out -- */ /* -- that means there is no feedback -- */ /* for further information on adaptive filter design we refer to */ /* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */ /* [2] Benesty, "Adaptive Signal Processing", Springer */ typedef struct NLMSerr_in_tilde { t_object x_obj;// common pd object structure t_symbol *x_w_array_sym_name; t_float *x_w_array_mem_beg; t_float *x_ref_filt_in_hist;// history buffer for input signal reference for internal convolution = filter t_float *x_ref_adapt_in_hist;// history buffer for input signal reference for internal adapting filter t_int x_rw_index;// current read-write-index in circular buffer t_int x_n_order;// order of filter or convolution t_int x_update;// binary update parameter ON / OFF t_float x_beta;// learn rate [0 .. 2] t_float x_gamma;// regularization Parameter = minimum t_float x_flt_sig_in1; } t_NLMSerr_in_tilde; t_class *NLMSerr_in_tilde_class; static t_float *NLMSerr_in_tilde_check_array(t_symbol *array_sym_name, t_int length) { int n_points; t_garray *a; t_float *vec; if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class))) { error("%s: no such array for NLMSerr_in~", array_sym_name->s_name); return((t_float *)0); } else if(!garray_getfloatarray(a, &n_points, &vec)) { error("%s: bad template for NLMSerr_in~", array_sym_name->s_name); return((t_float *)0); } else if(n_points < length) { error("%s: bad array-size for NLMSerr_in~: %d", array_sym_name->s_name, n_points); return((t_float *)0); } else { return(vec); } } static void NLMSerr_in_tilde_beta(t_NLMSerr_in_tilde *x, t_floatarg f) // learn rate { if(f < 0.0f) f = 0.0f; if(f > 2.0f) f = 2.0f; x->x_beta = f; } static void NLMSerr_in_tilde_gamma(t_NLMSerr_in_tilde *x, t_floatarg f) // regularization factor (dither) { if(f < 0.0f) f = 0.0f; if(f > 1.0f) f = 1.0f; x->x_gamma = f; } static void NLMSerr_in_tilde_update(t_NLMSerr_in_tilde *x, t_floatarg f) // downsample learn-rate { t_int i=1, u = (t_int)f; if(u != 0) u = 1; x->x_update = u; } /* ============== DSP ======================= */ static t_int *NLMSerr_in_tilde_perform_zero(t_int *w) { t_NLMSerr_in_tilde *x = (t_NLMSerr_in_tilde *)(w[5]); t_int n = (t_int)(w[6]); t_float *filt_out = (t_float *)(w[4]); t_int i; for(i=0; ix_n_order; /* number of filter-order */ t_int rw_index = x->x_rw_index; /* current read write index in circular buffer */ t_int update = x->x_update; t_float beta = x->x_beta; /* learn rate */ t_float gammax = x->x_gamma; /* minimum energy */ t_float my, my_err, sum, errin; t_int i, j, k; if(!x->x_w_array_mem_beg) goto NLMSerr_in_tildeperfzero;// this is quick&dirty Musil/Miller style for(i=0; ix_ref_filt_in_hist[rw_index] = ref_filt_in[i]; // inputs of ref_filt save to history x->x_ref_adapt_in_hist[rw_index] = ref_adapt_in[i]; // inputs of ref_adapt save to history errin = err_in[i]; // begin convolution, filter : j++, k--, rw_index = aktueller index fuer lesen schreiben von history und convolution-beginn sum = 0.0f; k = rw_index; for(j=0; jx_w_array_mem_beg[j] * x->x_ref_filt_in_hist[k]; k--; if(k < 0) k = n_order - 1; } filt_out[i] = sum; if(update) // downsampling for learn rate { sum = 0.0f;// calculate energy for last n-order samples in filter k = rw_index; for(j=0; jx_ref_adapt_in_hist[k] * x->x_ref_adapt_in_hist[k]; // energie k--; if(k < 0) k = n_order - 1; } sum += gammax * gammax * (float)n_order; // convert gammax corresponding to filter order my = beta / sum;// calculate mue my_err = my * errin; k = rw_index; for(j=0; jx_w_array_mem_beg[j] += x->x_ref_adapt_in_hist[k] * my_err; k--; if(k < 0) k = n_order - 1; } } rw_index++; if(rw_index >= n_order) rw_index = 0; } x->x_rw_index = rw_index; // back to start return(w+7); NLMSerr_in_tildeperfzero: while(n--) { *filt_out++ = 0.0f; } return(w+7); } static void NLMSerr_in_tilde_dsp(t_NLMSerr_in_tilde *x, t_signal **sp) { x->x_w_array_mem_beg = NLMSerr_in_tilde_check_array(x->x_w_array_sym_name, x->x_n_order); if(!x->x_w_array_mem_beg) dsp_add(NLMSerr_in_tilde_perform_zero, 6, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, x, sp[0]->s_n); else dsp_add(NLMSerr_in_tilde_perform, 6, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, x, sp[0]->s_n); } /* setup/setdown things */ static void NLMSerr_in_tilde_free(t_NLMSerr_in_tilde *x) { freebytes(x->x_ref_filt_in_hist, x->x_n_order*sizeof(t_float)); freebytes(x->x_ref_adapt_in_hist, x->x_n_order*sizeof(t_float)); } static void *NLMSerr_in_tilde_new(t_symbol *s, t_int argc, t_atom *argv) { t_NLMSerr_in_tilde *x = (t_NLMSerr_in_tilde *)pd_new(NLMSerr_in_tilde_class); t_int i, n_order=39; t_symbol *w_name; t_float beta=0.01f; t_float gammax=0.00001f; if((argc >= 4) && IS_A_FLOAT(argv,0) && //IS_A_FLOAT/SYMBOL from iemlib.h IS_A_FLOAT(argv,1) && IS_A_FLOAT(argv,2) && IS_A_SYMBOL(argv,3)) { n_order = (t_int)atom_getintarg(0, argc, argv); beta = (t_float)atom_getfloatarg(1, argc, argv); gammax = (t_float)atom_getfloatarg(2, argc, argv); w_name = (t_symbol *)atom_getsymbolarg(3, argc, argv); if(beta < 0.0f) beta = 0.0f; if(beta > 2.0f) beta = 2.0f; if(gammax < 0.0f) gammax = 0.0f; if(gammax > 1.0f) gammax = 1.0f; if(n_order < 2) n_order = 2; if(n_order > 1111111) n_order = 1111111; inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal); inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal); outlet_new(&x->x_obj, &s_signal); x->x_flt_sig_in1 = 0; x->x_n_order = n_order; x->x_update = 0; x->x_beta = beta; x->x_gamma = gammax; // 2 times in and one time err_in memory allocation (history) x->x_ref_filt_in_hist = (t_float *)getbytes(x->x_n_order*sizeof(t_float)); x->x_ref_adapt_in_hist = (t_float *)getbytes(x->x_n_order*sizeof(t_float)); // table-symbols will be linked to their memory in future (dsp_routine) x->x_w_array_sym_name = gensym(w_name->s_name); x->x_w_array_mem_beg = (t_float *)0; x->x_rw_index = 0; return(x); } else { post("NLMSerr_in~-ERROR: need 3 float- + 1 symbol-arguments:"); post(" order_of_filter + learnrate_beta + security_value + array_name_taps"); return(0); } } void NLMSerr_in_tilde_setup(void) { NLMSerr_in_tilde_class = class_new(gensym("NLMSerr_in~"), (t_newmethod)NLMSerr_in_tilde_new, (t_method)NLMSerr_in_tilde_free, sizeof(t_NLMSerr_in_tilde), 0, A_GIMME, 0); CLASS_MAINSIGNALIN(NLMSerr_in_tilde_class, t_NLMSerr_in_tilde, x_flt_sig_in1); class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_dsp, gensym("dsp"), 0); class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N) class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate class_addmethod(NLMSerr_in_tilde_class, (t_method)NLMSerr_in_tilde_gamma, gensym("gamma"), A_FLOAT, 0); // method: dithering noise related to signal }