/* For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. n_CNLMS multichannel-constrained (non leaky) normalized LMS algorithm lib iem_adaptfilt written by Markus Noisternig & Thomas Musil noisternig_AT_iem.at; musil_AT_iem.at (c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */ #ifdef NT #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif #include "m_pd.h" #include "iemlib.h" #include #include #include /* ----------------------- n_CNLMS~ ------------------------------ */ /* -- multi-channel Constraint Normalized Least Mean Square (linear adaptive FIR-filter) -- */ /* -- first input: reference signal -- */ /* -- second input: desired signal -- */ /* -- -- */ /* for further information on adaptive filter design we refer to */ /* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */ /* [2] Benesty, "Adaptive Signal Processing", Springer */ typedef struct n_CNLMS_tilde_kern { t_symbol *x_w_array_sym_name; t_float *x_w_array_mem_beg; t_float *x_in_ptr_beg;// memory: sig-in vector t_float *x_out_ptr_beg;// memory: sig-out vector t_float *x_in_hist;// start point double buffer for sig-in history } t_n_CNLMS_tilde_kern; typedef struct n_CNLMS_tilde { t_object x_obj; t_n_CNLMS_tilde_kern *x_my_kern; t_float *x_des_in_ptr_beg;// memory: desired-in vector t_float *x_err_out_ptr_beg;// memory: error-out vector t_int x_n_io;// number of in-channels and filtered out-channels t_int x_rw_index;// read-write-index t_int x_n_order;// filter order t_int x_update;// rounded by 2^n, yields downsampling of update rate t_float x_beta;// learn rate [0 .. 2] t_float x_gamma;// normalization t_float x_kappa;// constraint: threshold of energy (clipping) t_outlet *x_out_compressing_bang; t_clock *x_clock; t_float x_msi; } t_n_CNLMS_tilde; t_class *n_CNLMS_tilde_class; static void n_CNLMS_tilde_tick(t_n_CNLMS_tilde *x) { outlet_bang(x->x_out_compressing_bang); } static t_float *n_CNLMS_tilde_check_array(t_symbol *array_sym_name, t_int length) { int n_points; t_garray *a; t_float *vec; if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class))) { error("%s: no such array for n_CNLMS~", array_sym_name->s_name); return((t_float *)0); } else if(!garray_getfloatarray(a, &n_points, &vec)) { error("%s: bad template for n_CNLMS~", array_sym_name->s_name); return((t_float *)0); } else if(n_points < length) { error("%s: bad array-size for n_CNLMS~: %d", array_sym_name->s_name, n_points); return((t_float *)0); } else { return(vec); } } static void n_CNLMS_tilde_beta(t_n_CNLMS_tilde *x, t_floatarg f) // learn rate { if(f < 0.0f) f = 0.0f; if(f > 2.0f) f = 2.0f; x->x_beta = f; } static void n_CNLMS_tilde_gamma(t_n_CNLMS_tilde *x, t_floatarg f) // regularization (dither) { if(f < 0.0f) f = 0.0f; if(f > 1.0f) f = 1.0f; x->x_gamma = f; } static void n_CNLMS_tilde_kappa(t_n_CNLMS_tilde *x, t_floatarg f) // threshold for w_coeff { if(f < 0.0001f) f = 0.0001f; if(f > 10000.0f) f = 10000.0f; x->x_kappa = f; } static void n_CNLMS_tilde_update(t_n_CNLMS_tilde *x, t_floatarg f) // downsampling of learn rate { t_int i=1, u = (t_int)f; if(u < 0) u = 0; else { while(i <= u) // convert u for 2^N i *= 2; // round downward i /= 2; u = i; } x->x_update = u; } /* ============== DSP ======================= */ static t_int *n_CNLMS_tilde_perform_zero(t_int *w) { t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)(w[1]); t_int n = (t_int)(w[2]); t_int n_io = x->x_n_io; t_float *out; t_int i, j; out = x->x_err_out_ptr_beg; for(i=0; ix_my_kern[j].x_out_ptr_beg; for(i=0; ix_n_order; /* filter-order */ t_int rw_index2, rw_index = x->x_rw_index; t_int n_io = x->x_n_io; t_float *in;// first sig in t_float din;// second sig in t_float *filt_out;// first sig out t_float *err_out, err_sum;// second sig out t_float *read_in_hist; t_float *w_filt_coeff; t_float my, my_err, sum; t_float beta = x->x_beta; t_float hgamma, gammax = x->x_gamma; t_float hkappa, kappa = x->x_kappa; t_int i, j, k, update_counter; t_int update = x->x_update; t_int ord8=n_order&0xfffffff8; t_int ord_residual=n_order&0x7; t_int compressed = 0; for(k=0; kx_my_kern[k].x_w_array_mem_beg) goto n_CNLMS_tildeperfzero;// this is Musil/Miller style } hgamma = gammax * gammax * (float)n_order; //hkappa = kappa * kappa * (float)n_order; hkappa = kappa;// kappa regards to energy value, else use line above for(i=0, update_counter=0; ix_my_kern[k].x_in_hist[rw_index] = x->x_my_kern[k].x_in_ptr_beg[i]; // save inputs into variabel & history x->x_my_kern[k].x_in_hist[rw_index+n_order] = x->x_my_kern[k].x_in_ptr_beg[i]; } din = x->x_des_in_ptr_beg[i]; // begin convolution err_sum = din; for(k=0; kx_my_kern[k].x_w_array_mem_beg; // Musil's special convolution buffer struct read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2]; for(j=0; jx_my_kern[k].x_out_ptr_beg[i] = sum; err_sum -= sum; } x->x_err_out_ptr_beg[i] = err_sum; // end convolution if(update) // downsampling of learn rate { update_counter++; if(update_counter >= update) { update_counter = 0; for(k=0; kx_my_kern[k].x_in_hist[rw_index2]; for(j=0; jx_my_kern[k].x_w_array_mem_beg; read_in_hist = &x->x_my_kern[k].x_in_hist[rw_index2]; sum = 0.0f; for(j=0; j hkappa) { compressed = 1; my = sqrt(hkappa/sum); w_filt_coeff = x->x_my_kern[k].x_w_array_mem_beg; for(j=0; j= n_order) rw_index -= n_order; } x->x_rw_index = rw_index; // back to start if(compressed) clock_delay(x->x_clock, 0); return(w+3); n_CNLMS_tildeperfzero: err_out = x->x_err_out_ptr_beg; for(i=0; ix_my_kern[j].x_out_ptr_beg; for(i=0; is_n; t_int ok_w = 1; t_int m = x->x_n_io; for(i=0; ix_my_kern[i].x_in_ptr_beg = sp[i]->s_vec; x->x_des_in_ptr_beg = sp[m]->s_vec; for(i=0; ix_my_kern[i].x_out_ptr_beg = sp[i+m+1]->s_vec; x->x_err_out_ptr_beg = sp[2*m+1]->s_vec; for(i=0; ix_my_kern[i].x_w_array_mem_beg = n_CNLMS_tilde_check_array(x->x_my_kern[i].x_w_array_sym_name, x->x_n_order); if(!x->x_my_kern[i].x_w_array_mem_beg) ok_w = 0; } if(!ok_w) dsp_add(n_CNLMS_tilde_perform_zero, 2, x, n); else dsp_add(n_CNLMS_tilde_perform, 2, x, n); } /* setup/setdown things */ static void n_CNLMS_tilde_free(t_n_CNLMS_tilde *x) { t_int i, n_io=x->x_n_io, n_order=x->x_n_order; for(i=0; ix_my_kern[i].x_in_hist, 2*x->x_n_order*sizeof(t_float)); freebytes(x->x_my_kern, n_io*sizeof(t_n_CNLMS_tilde_kern)); clock_free(x->x_clock); } static void *n_CNLMS_tilde_new(t_symbol *s, t_int argc, t_atom *argv) { t_n_CNLMS_tilde *x = (t_n_CNLMS_tilde *)pd_new(n_CNLMS_tilde_class); char buffer[400]; int i; t_int n_order=39, n_io=1; t_symbol *w_name; t_float beta=0.1f; t_float gammax=0.00001f; t_float kappa = 1.0f; if((argc >= 6) && IS_A_FLOAT(argv,0) && //IS_A_FLOAT/SYMBOL from iemlib.h IS_A_FLOAT(argv,1) && IS_A_FLOAT(argv,2) && IS_A_FLOAT(argv,3) && IS_A_FLOAT(argv,4) && IS_A_SYMBOL(argv,5)) { n_io = (t_int)atom_getintarg(0, argc, argv); n_order = (t_int)atom_getintarg(1, argc, argv); beta = (t_float)atom_getfloatarg(2, argc, argv); gammax = (t_float)atom_getfloatarg(3, argc, argv); kappa = (t_float)atom_getfloatarg(4, argc, argv); w_name = (t_symbol *)atom_getsymbolarg(5, argc, argv); if(beta < 0.0f) beta = 0.0f; if(beta > 2.0f) beta = 2.0f; if(gammax < 0.0f) gammax = 0.0f; if(gammax > 1.0f) gammax = 1.0f; if(kappa < 0.0001f) kappa = 0.0001f; if(kappa > 10000.0f) kappa = 10000.0f; if(n_order < 2) n_order = 2; if(n_order > 11111) n_order = 11111; if(n_io < 1) n_io = 1; if(n_io > 60) n_io = 60; for(i=0; ix_obj, &x->x_obj.ob_pd, &s_signal, &s_signal); for(i=0; i<=n_io; i++) outlet_new(&x->x_obj, &s_signal); x->x_out_compressing_bang = outlet_new(&x->x_obj, &s_bang); x->x_msi = 0; x->x_n_io = n_io; x->x_n_order = n_order; x->x_update = 0; x->x_beta = beta; x->x_gamma = gammax; x->x_kappa = kappa; x->x_my_kern = (t_n_CNLMS_tilde_kern *)getbytes(x->x_n_io*sizeof(t_n_CNLMS_tilde_kern)); for(i=0; is_name); x->x_my_kern[i].x_w_array_sym_name = gensym(buffer); x->x_my_kern[i].x_w_array_mem_beg = (t_float *)0; x->x_my_kern[i].x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float)); } x->x_clock = clock_new(x, (t_method)n_CNLMS_tilde_tick); return(x); } else { post("n_CNLMSC~-ERROR: need 5 float- + 1 symbol-arguments:"); post(" number_of_filters + order_of_filters + learnrate_beta + security_value_gamma + threshold_kappa + array_name_taps"); return(0); } } void n_CNLMS_tilde_setup(void) { n_CNLMS_tilde_class = class_new(gensym("n_CNLMS~"), (t_newmethod)n_CNLMS_tilde_new, (t_method)n_CNLMS_tilde_free, sizeof(t_n_CNLMS_tilde), 0, A_GIMME, 0); CLASS_MAINSIGNALIN(n_CNLMS_tilde_class, t_n_CNLMS_tilde, x_msi); class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_dsp, gensym("dsp"), 0); class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N) class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_gamma, gensym("gamma"), A_FLOAT, 0); // method: dithering noise related to signal class_addmethod(n_CNLMS_tilde_class, (t_method)n_CNLMS_tilde_kappa, gensym("kappa"), A_FLOAT, 0); // method: threshold for compressing w_coeff //class_sethelpsymbol(n_CNLMS_tilde_class, gensym("iemhelp2/n_CNLMS~")); }