/* For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. NLMS normalized least mean square (LMS) algorithm lib iem_adaptfilt written by Markus Noisternig & Thomas Musil noisternig_AT_iem.at; musil_AT_iem.at (c) Institute of Electronic Music and Acoustics, Graz Austria 2005 */ #ifdef NT #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif #include "m_pd.h" #include "iemlib.h" #include #include #include /* ----------------------- NLMS~ ------------------------------ */ /* -- Normalized Least Mean Square (linear adaptive FIR-filter) -- */ /* -- first input: reference signal -- */ /* -- second input: desired signal -- */ /* -- -- */ /* for further information on adaptive filter design we refer to */ /* [1] Haykin, "Adaptive Filter Theory", 4th ed, Prentice Hall */ /* [2] Benesty, "Adaptive Signal Processing", Springer */ typedef struct sigNLMS { t_object x_obj; t_symbol *x_w_array_sym_name; t_float *x_w_array_mem_beg; t_float *x_io_ptr_beg[4];// memory: 2 sig-in and 2 sig-out vectors t_float *x_in_hist;// start point double buffer for sig-in history t_int x_rw_index;// read-write-index t_int x_n_order;// order of filter t_int x_update;// 2^n rounded value, downsampling of update speed t_float x_beta;// learn rate [0 .. 2] t_float x_gamma;// regularization t_float x_msi; } t_sigNLMS; t_class *sigNLMS_class; static t_float *sigNLMS_check_array(t_symbol *array_sym_name, t_int length) { t_int n_points; t_garray *a; t_float *vec; if(!(a = (t_garray *)pd_findbyclass(array_sym_name, garray_class))) { error("%s: no such array for NLMS~", array_sym_name->s_name); return((t_float *)0); } else if(!garray_getfloatarray(a, &n_points, &vec)) { error("%s: bad template for NLMS~", array_sym_name->s_name); return((t_float *)0); } else if(n_points < length) { error("%s: bad array-size for NLMS~: %d", array_sym_name->s_name, n_points); return((t_float *)0); } else { return(vec); } } static void sigNLMS_beta(t_sigNLMS *x, t_floatarg f) // learn rate { if(f < 0.0f) f = 0.0f; if(f > 2.0f) f = 2.0f; x->x_beta = f; } static void sigNLMS_gamma(t_sigNLMS *x, t_floatarg f) // regularization factor (dither) { if(f < 0.0f) f = 0.0f; if(f > 1.0f) f = 1.0f; x->x_gamma = f; } static void sigNLMS_update(t_sigNLMS *x, t_floatarg f) // downsample learn-rate { t_int i=1, u = (t_int)f; if(u < 0) u = 0; else { while(i <= u) // convert u for 2^N i *= 2; // round downwards i /= 2; u = i; } x->x_update = u; } /* ============== DSP ======================= */ static t_int *sigNLMS_perform_zero(t_int *w) { t_sigNLMS *x = (t_sigNLMS *)(w[1]); t_int n = (t_int)(w[2]); t_float **io = x->x_io_ptr_beg; t_float *out; t_int i, j; for(j=0; j<2; j++)/* output-vector-row */ { out = io[j+2]; for(i=0; ix_n_order; /* number of filter-order */ t_int rw_index = x->x_rw_index; t_float *in = x->x_io_ptr_beg[0];// first sig in t_float *desired_in = x->x_io_ptr_beg[1], din;// second sig in t_float *filt_out = x->x_io_ptr_beg[2];// first sig out t_float *err_out = x->x_io_ptr_beg[3], eout;// second sig out t_float *write_in_hist1 = x->x_in_hist; t_float *write_in_hist2 = write_in_hist1+n_order; t_float *read_in_hist = write_in_hist2; t_float *w_filt_coeff = x->x_w_array_mem_beg; t_float my, my_err, sum; t_float beta = x->x_beta; t_float gamma = x->x_gamma; t_int i, j, update_counter; t_int update = x->x_update; t_int ord8=n_order&0xfffffff8; t_int ord_residual=n_order&0x7; if(!w_filt_coeff) goto sigNLMSperfzero;// this is quick&dirty Musil/Miller style for(i=0, update_counter=0; ix_w_array_mem_beg; // Musil's special convolution buffer struct read_in_hist = &write_in_hist2[rw_index]; for(j=0; j= update) { update_counter = 0; sum = 0.0f;// calculate energy for last n-order samples in filter read_in_hist = &write_in_hist2[rw_index]; for(j=0; jx_w_array_mem_beg; // coefficient constraints read_in_hist = &write_in_hist2[rw_index]; for(j=0; j= n_order) rw_index -= n_order; } x->x_rw_index = rw_index; // back to start return(w+3); sigNLMSperfzero: while(n--) { *filt_out++ = 0.0f; *err_out++ = 0.0f; } return(w+3); } static void sigNLMS_dsp(t_sigNLMS *x, t_signal **sp) { t_int i, n = sp[0]->s_n; for(i=0; i<4; i++) // store io_vec x->x_io_ptr_beg[i] = sp[i]->s_vec; x->x_w_array_mem_beg = sigNLMS_check_array(x->x_w_array_sym_name, x->x_n_order); if(!x->x_w_array_mem_beg) dsp_add(sigNLMS_perform_zero, 2, x, n); else dsp_add(sigNLMS_perform, 2, x, n); } /* setup/setdown things */ static void sigNLMS_free(t_sigNLMS *x) { freebytes(x->x_in_hist, 2*x->x_n_order*sizeof(t_float)); } static void *sigNLMS_new(t_symbol *s, t_int argc, t_atom *argv) { t_sigNLMS *x = (t_sigNLMS *)pd_new(sigNLMS_class); t_int i, n_order=39; t_symbol *w_name; t_float beta=0.1f; t_float gamma=0.00001f; if((argc >= 4) && IS_A_FLOAT(argv,0) && //IS_A_FLOAT/SYMBOL from iemlib.h IS_A_FLOAT(argv,1) && IS_A_FLOAT(argv,2) && IS_A_SYMBOL(argv,3)) { n_order = (t_int)atom_getintarg(0, argc, argv); beta = (t_float)atom_getfloatarg(1, argc, argv); gamma = (t_float)atom_getfloatarg(2, argc, argv); w_name = (t_symbol *)atom_getsymbolarg(3, argc, argv); if(beta < 0.0f) beta = 0.0f; if(beta > 2.0f) beta = 2.0f; if(gamma < 0.0f) gamma = 0.0f; if(gamma > 1.0f) gamma = 1.0f; if(n_order < 2) n_order = 2; if(n_order > 11111) n_order = 11111; inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal); outlet_new(&x->x_obj, &s_signal); outlet_new(&x->x_obj, &s_signal); x->x_msi = 0; x->x_n_order = n_order; x->x_update = 0; x->x_beta = beta; x->x_gamma = gamma; // 2 times in and one time desired_in memory allocation (history) x->x_in_hist = (t_float *)getbytes(2*x->x_n_order*sizeof(t_float)); // table-symbols will be linked to their memory in future (dsp_routine) x->x_w_array_sym_name = gensym(w_name->s_name); x->x_w_array_mem_beg = (t_float *)0; return(x); } else { post("NLMS~-ERROR: need 3 float- + 1 symbol-arguments:"); post(" order_of_filter + learnrate_beta + security_value + array_name_taps"); return(0); } } void sigNLMS_setup(void) { sigNLMS_class = class_new(gensym("NLMS~"), (t_newmethod)sigNLMS_new, (t_method)sigNLMS_free, sizeof(t_sigNLMS), 0, A_GIMME, 0); CLASS_MAINSIGNALIN(sigNLMS_class, t_sigNLMS, x_msi); class_addmethod(sigNLMS_class, (t_method)sigNLMS_dsp, gensym("dsp"), 0); class_addmethod(sigNLMS_class, (t_method)sigNLMS_update, gensym("update"), A_FLOAT, 0); // method: downsampling factor of learning (multiple of 2^N) class_addmethod(sigNLMS_class, (t_method)sigNLMS_beta, gensym("beta"), A_FLOAT, 0); //method: normalized learning rate class_addmethod(sigNLMS_class, (t_method)sigNLMS_gamma, gensym("gamma"), A_FLOAT, 0); // method: dithering noise related to signal class_sethelpsymbol(sigNLMS_class, gensym("iemhelp2/NLMS~")); }