/* For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. iem_bin_ambi written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2009 */ #include "m_pd.h" #include "iemlib.h" #include "iem_bin_ambi.h" #include #include #include /* -------------------------- bin_ambi_reduced_decode_fft2 ------------------------------ */ /* ** berechnet ein reduziertes Ambisonic-Decoder-Set in die HRTF-Spektren ** ** Inputs: ls + Liste von 3 floats: Index [1 .. 16] + Elevation [-90 .. +90 degree] + Azimut [0 .. 360 degree] ** ** Inputs: calc_inv ** ** Inputs: load_HRIR + float index1..16 ** ** Outputs: List of 2 symbols: left-HRIR-File-name + HRIR-table-name ** ** Inputs: calc_reduced ** ** "output" ... writes the HRTF into tables ** ** ** ** ** ** setzt voraus , dass die HRIR-tabele-names von 1016_1_L_HRIR .. 1016_16_L_HRIR heissen und existieren ** ** setzt voraus , dass die HRTF-tabele-names von 1016_1_HRTF_re .. 1016_16_HRTF_re heissen und existieren ** ** setzt voraus , dass die HRTF-tabele-names von 1016_1_HRTF_im .. 1016_16_HRTF_im heissen und existieren ** */ typedef struct _bin_ambi_reduced_decode_fft2 { t_object x_obj; t_atom x_at[2];/*output filename and tablename of HRIR*/ int x_n_dim;/*dimension of ambisonic system*/ int x_n_ambi;/*number of ambi channels*/ int x_n_order;/*order of ambisonic system*/ int x_n_real_ls;/*number of real loudspeakers*/ int x_n_pht_ls;/*number of phantom loudspeakers*/ int x_seq_ok; int x_fftsize;/*fftsize of blockfilter, should be 2 times of FIR-length of HRIR*/ double *x_inv_work1;/* n_ambi*n_ambi buffer for matrix inverse */ double *x_inv_work2;/* 2*n_ambi*n_ambi buffer for matrix inverse */ double *x_inv_buf2;/* 2*n_ambi buffer for matrix inverse */ double *x_transp;/* n_ls*n_ambi transposed input-buffer of decoder-matrix before inversion */ double *x_ls_encode;/* n_ambi*n_ls straight input-buffer of decoder-matrix before inversion */ double *x_prod2;/* n_ls*n_ambi output-buffer of decoder-matrix after inversion */ double *x_prod3;/* n_ls*n_ambi output-buffer of decoder-matrix after inversion */ double *x_ambi_channel_weight; int *x_delta; int *x_phi; int *x_phi_sym; int *x_sym_flag; BIN_AMBI_COMPLEX *x_spec; BIN_AMBI_COMPLEX *x_sin_cos; iemarray_t *x_beg_fade_out_hrir; t_float *x_beg_hrir; iemarray_t **x_beg_hrtf_re; iemarray_t **x_beg_hrtf_im; t_symbol **x_hrir_filename; t_symbol **x_s_hrir; t_symbol **x_s_hrtf_re; t_symbol **x_s_hrtf_im; t_symbol *x_s_fade_out_hrir; void *x_out_sign_sum; double x_sqrt3; double x_sqrt10_4; double x_sqrt15_2; double x_sqrt6_4; double x_sqrt35_8; double x_sqrt70_4; double x_sqrt5_2; double x_sqrt126_16; double x_sqrt315_8; double x_sqrt105_4; double x_pi_over_180; double x_sing_range; } t_bin_ambi_reduced_decode_fft2; static t_class *bin_ambi_reduced_decode_fft2_class; static void bin_ambi_reduced_decode_fft2_init_cos(t_bin_ambi_reduced_decode_fft2 *x) {/* initialize a whole sine and cosine wave over a fftsize array */ int i, fftsize = x->x_fftsize; t_float f, g; BIN_AMBI_COMPLEX *sincos = x->x_sin_cos; g = 2.0f * 3.1415926538f / (t_float)fftsize; for(i=0; i 90.0) d = 90.0; while(p < 0.0) p += 360.0; while(p >= 360.0) p -= 360.0; x->x_delta[xindex] = (int)(d); x->x_phi[xindex] = (int)(p); *delta_deg2rad = d*x->x_pi_over_180; *phi_deg2rad = p*x->x_pi_over_180; } static void bin_ambi_reduced_decode_fft2_do_2d(t_bin_ambi_reduced_decode_fft2 *x, int argc, t_atom *argv, int mode) { double delta=0.0, phi; double *dw = x->x_transp; int xindex; int order=x->x_n_order; if(argc < 2) { post("bin_ambi_reduced_decode_fft2 ERROR: ls-input needs 1 index and 1 angle: ls_index + phi [degree]"); return; } xindex = (int)atom_getint(argv++) - 1; phi = (double)atom_getfloat(argv); if(xindex < 0) xindex = 0; if(mode == BIN_AMBI_LS_REAL) { if(xindex >= x->x_n_real_ls) xindex = x->x_n_real_ls - 1; } else if(mode == BIN_AMBI_LS_PHT) { if(x->x_n_pht_ls) { if(xindex >= x->x_n_pht_ls) xindex = x->x_n_pht_ls - 1; xindex += x->x_n_real_ls; } else return; } else return; bin_ambi_reduced_decode_fft2_convert(x, &delta, &phi, xindex); dw += xindex * x->x_n_ambi; *dw++ = 1.0; *dw++ = cos(phi); *dw++ = sin(phi); if(order >= 2) { *dw++ = cos(2.0*phi); *dw++ = sin(2.0*phi); if(order >= 3) { *dw++ = cos(3.0*phi); *dw++ = sin(3.0*phi); if(order >= 4) { *dw++ = cos(4.0*phi); *dw++ = sin(4.0*phi); if(order >= 5) { *dw++ = cos(5.0*phi); *dw++ = sin(5.0*phi); if(order >= 6) { *dw++ = cos(6.0*phi); *dw++ = sin(6.0*phi); if(order >= 7) { *dw++ = cos(7.0*phi); *dw++ = sin(7.0*phi); if(order >= 8) { *dw++ = cos(8.0*phi); *dw++ = sin(8.0*phi); if(order >= 9) { *dw++ = cos(9.0*phi); *dw++ = sin(9.0*phi); if(order >= 10) { *dw++ = cos(10.0*phi); *dw++ = sin(10.0*phi); if(order >= 11) { *dw++ = cos(11.0*phi); *dw++ = sin(11.0*phi); if(order >= 12) { *dw++ = cos(12.0*phi); *dw++ = sin(12.0*phi); } } } } } } } } } } } } static void bin_ambi_reduced_decode_fft2_do_3d(t_bin_ambi_reduced_decode_fft2 *x, int argc, t_atom *argv, int mode) { double delta, phi; double cd, sd, cd2, cd3, sd2, csd, cp, sp, cp2, sp2, cp3, sp3, cp4, sp4; double *dw = x->x_transp; int xindex; int order=x->x_n_order; if(argc < 3) { post("bin_ambi_reduced_decode_fft2 ERROR: ls-input needs 1 index and 2 angles: ls index + delta [degree] + phi [degree]"); return; } xindex = (int)atom_getint(argv++) - 1; delta = atom_getfloat(argv++); phi = atom_getfloat(argv); if(xindex < 0) xindex = 0; if(mode == BIN_AMBI_LS_REAL) { if(xindex >= x->x_n_real_ls) xindex = x->x_n_real_ls - 1; } else if(mode == BIN_AMBI_LS_PHT) { if(x->x_n_pht_ls) { if(xindex >= x->x_n_pht_ls) xindex = x->x_n_pht_ls - 1; xindex += x->x_n_real_ls; } else return; } else return; bin_ambi_reduced_decode_fft2_convert(x, &delta, &phi, xindex); cd = cos(delta); sd = sin(delta); cp = cos(phi); sp = sin(phi); dw += xindex * x->x_n_ambi; *dw++ = 1.0; *dw++ = cd * cp; *dw++ = cd * sp; *dw++ = sd; if(order >= 2) { cp2 = cos(2.0*phi); sp2 = sin(2.0*phi); cd2 = cd * cd; sd2 = sd * sd; csd = cd * sd; *dw++ = 0.5 * x->x_sqrt3 * cd2 * cp2; *dw++ = 0.5 * x->x_sqrt3 * cd2 * sp2; *dw++ = x->x_sqrt3 * csd * cp; *dw++ = x->x_sqrt3 * csd * sp; *dw++ = 0.5 * (3.0 * sd2 - 1.0); if(order >= 3) { cp3 = cos(3.0*phi); sp3 = sin(3.0*phi); cd3 = cd2 * cd; *dw++ = x->x_sqrt10_4 * cd3 * cp3; *dw++ = x->x_sqrt10_4 * cd3 * sp3; *dw++ = x->x_sqrt15_2 * cd * csd * cp2; *dw++ = x->x_sqrt15_2 * cd * csd * sp2; *dw++ = x->x_sqrt6_4 * cd * (5.0 * sd2 - 1.0) * cp; *dw++ = x->x_sqrt6_4 * cd * (5.0 * sd2 - 1.0) * sp; *dw++ = 0.5 * sd * (5.0 * sd2 - 3.0); if(order >= 4) { cp4 = cos(4.0*phi); sp4 = sin(4.0*phi); *dw++ = x->x_sqrt35_8 * cd2 * cd2 * cp4; *dw++ = x->x_sqrt35_8 * cd2 * cd2 * sp4; *dw++ = x->x_sqrt70_4 * cd2 * csd * cp3; *dw++ = x->x_sqrt70_4 * cd2 * csd * sp3; *dw++ = 0.5 * x->x_sqrt5_2 * cd2 * (7.0 * sd2 - 1.0) * cp2; *dw++ = 0.5 * x->x_sqrt5_2 * cd2 * (7.0 * sd2 - 1.0) * sp2; *dw++ = x->x_sqrt10_4 * csd * (7.0 * sd2 - 3.0) * cp; *dw++ = x->x_sqrt10_4 * csd * (7.0 * sd2 - 3.0) * sp; *dw++ = 0.125 * (sd2 * (35.0 * sd2 - 30.0) + 3.0); if(order >= 5) { *dw++ = x->x_sqrt126_16 * cd3 * cd2 * cos(5.0*phi); *dw++ = x->x_sqrt126_16 * cd3 * cd2 * sin(5.0*phi); *dw++ = x->x_sqrt315_8 * cd3 * csd * cp4; *dw++ = x->x_sqrt315_8 * cd3 * csd * sp4; *dw++ = 0.25 * x->x_sqrt70_4 * cd3 * (9.0 * sd2 - 1.0) * cp3; *dw++ = 0.25 * x->x_sqrt70_4 * cd3 * (9.0 * sd2 - 1.0) * sp3; *dw++ = x->x_sqrt105_4 * cd * csd * (3.0 * sd2 - 1.0) * cp2; *dw++ = x->x_sqrt105_4 * cd * csd * (3.0 * sd2 - 1.0) * sp2; *dw++ = 0.25 * x->x_sqrt15_2 * cd * (sd2 * (21.0 * sd2 - 14.0) + 1.0) * cp; *dw++ = 0.25 * x->x_sqrt15_2 * cd * (sd2 * (21.0 * sd2 - 14.0) + 1.0) * sp; *dw = 0.125 * sd * (sd2 * (63.0 * sd2 - 70.0) + 15.0); } } } } } static void bin_ambi_reduced_decode_fft2_real_ls(t_bin_ambi_reduced_decode_fft2 *x, t_symbol *s, int argc, t_atom *argv) { if(x->x_n_dim == 2) bin_ambi_reduced_decode_fft2_do_2d(x, argc, argv, BIN_AMBI_LS_REAL); else bin_ambi_reduced_decode_fft2_do_3d(x, argc, argv, BIN_AMBI_LS_REAL); x->x_seq_ok = 1; } static void bin_ambi_reduced_decode_fft2_pht_ls(t_bin_ambi_reduced_decode_fft2 *x, t_symbol *s, int argc, t_atom *argv) { if(x->x_n_dim == 2) bin_ambi_reduced_decode_fft2_do_2d(x, argc, argv, BIN_AMBI_LS_PHT); else bin_ambi_reduced_decode_fft2_do_3d(x, argc, argv, BIN_AMBI_LS_PHT); } static void bin_ambi_reduced_decode_fft2_copy_row2buf(t_bin_ambi_reduced_decode_fft2 *x, int row) { int n_ambi2 = 2*x->x_n_ambi; int i; double *dw=x->x_inv_work2; double *db=x->x_inv_buf2; dw += row*n_ambi2; for(i=0; ix_n_ambi; int i; double *dw=x->x_inv_work2; double *db=x->x_inv_buf2; dw += row*n_ambi2; for(i=0; ix_n_ambi; int i; double *dw_src=x->x_inv_work2; double *dw_dst=x->x_inv_work2; dw_src += src_row*n_ambi2; dw_dst += dst_row*n_ambi2; for(i=0; ix_n_ambi; int i; double *dw=x->x_inv_work2; dw += row*n_ambi2; for(i=0; ix_n_ambi; int n_ambi2 = 2*n_ambi; int i; double *dw=x->x_inv_work2; dw += col; for(i=0; ix_n_ambi; int i; double *dw=x->x_inv_work2; double *db=x->x_inv_buf2; dw += row*n_ambi2; for(i=0; ix_n_ambi; int n_ambi2 = 2*n_ambi; int i, j; double *dw=x->x_inv_work2; double singrange=x->x_sing_range; int ret=-1; dw += start_row*n_ambi2 + col; j = 0; for(i=start_row; i singrange) || (*dw < -singrange)) { ret = i; i = n_ambi+1; } dw += n_ambi2; } return(ret); } static void bin_ambi_reduced_decode_fft2_mul1(t_bin_ambi_reduced_decode_fft2 *x) { double *vec1, *beg1=x->x_ls_encode; double *vec2, *beg2=x->x_ls_encode; double *inv=x->x_inv_work1; double sum; int n_ls=x->x_n_real_ls+x->x_n_pht_ls; int n_ambi=x->x_n_ambi; int i, j, k; for(k=0; kx_ls_encode; for(j=0; jx_n_real_ls+x->x_n_pht_ls; int n_ambi=x->x_n_ambi; int n_ambi2=2*n_ambi; int i, j, k; double *vec1, *beg1=x->x_transp; double *vec2, *beg2=x->x_inv_work2+n_ambi; double *vec3=x->x_prod2; double *acw_vec=x->x_ambi_channel_weight; double sum; for(k=0; kx_inv_work2+n_ambi; for(j=0; jx_prod3; double *dv2=x->x_prod2; double *dv1=x->x_prod2; double mw=x->x_mirror_weight; n = x->x_n_real_ls * x->x_n_ambi; for(i=0; ix_n_mrg_mir_ls * x->x_n_ambi; dv2 += n; for(i=0; ix_transp; double *straight=x->x_ls_encode; int n_ls=x->x_n_real_ls+x->x_n_pht_ls; int n_ambi=x->x_n_ambi; int i, j; transp = x->x_transp; for(j=0; jx_n_ambi; int n_ambi2 = 2*n_ambi; int i, j, nz; int r,c; double *src=x->x_inv_work1; double *db=x->x_inv_work2; double rcp, *dv; dv = db; for(i=0; ix_seq_ok = 0; return; } else { if(nz != i) bin_ambi_reduced_decode_fft2_xch_rows(x, i, nz); dv = db + i*n_ambi2 + i; rcp = 1.0 /(*dv); bin_ambi_reduced_decode_fft2_mul_row(x, i, rcp); bin_ambi_reduced_decode_fft2_copy_row2buf(x, i); for(j=i+1; j=0; i--) { dv = db + i*n_ambi2 + i; bin_ambi_reduced_decode_fft2_copy_row2buf(x, i); for(j=i-1; j>=0; j--) { dv -= n_ambi2; rcp = -(*dv); bin_ambi_reduced_decode_fft2_mul_buf_and_add2row(x, j, rcp); } } post("matrix_inverse regular"); x->x_seq_ok = 1; } static void bin_ambi_reduced_decode_fft2_calc_pinv(t_bin_ambi_reduced_decode_fft2 *x) { t_garray *a; int npoints; iemarray_t *fadevec; int i, n; double *dv3=x->x_prod3; double *dv2=x->x_prod2; if(x->x_beg_fade_out_hrir == 0) { if (!(a = (t_garray *)pd_findbyclass(x->x_s_fade_out_hrir, garray_class))) error("%s: no such array", x->x_s_fade_out_hrir->s_name); else if (!iemarray_getarray(a, &npoints, &fadevec)) error("%s: bad template for bin_ambi_reduced_decode_fft2", x->x_s_fade_out_hrir->s_name); else if (npoints < x->x_fftsize) error("%s: bad array-size: %d", x->x_s_fade_out_hrir->s_name, npoints); else x->x_beg_fade_out_hrir = fadevec; } bin_ambi_reduced_decode_fft2_transp_back(x); bin_ambi_reduced_decode_fft2_mul1(x); bin_ambi_reduced_decode_fft2_inverse(x); bin_ambi_reduced_decode_fft2_mul2(x); n = x->x_n_real_ls * x->x_n_ambi; for(i=0; ix_n_ambi; int i, pht_index, real_index; double *dv3=x->x_prod3; double *dv2=x->x_prod2; t_float mw; if(argc < 3) { post("bin_ambi_reduced_decode_fft2 ERROR: ipht_ireal_muladd needs 2 index and 1 mirrorweight: pht_ls_index + real_ls_index + mirror_weight_element"); return; } pht_index = (int)atom_getint(argv++) - 1; real_index = (int)atom_getint(argv++) - 1; mw = (double)atom_getfloat(argv); if(pht_index < 0) pht_index = 0; if(real_index < 0) real_index = 0; if(real_index >= x->x_n_real_ls) real_index = x->x_n_real_ls - 1; if(pht_index >= x->x_n_pht_ls) pht_index = x->x_n_pht_ls - 1; dv3 += real_index*x->x_n_ambi; dv2 += (x->x_n_real_ls+pht_index)*x->x_n_ambi; for(i=0; i= x->x_n_real_ls) xindex = x->x_n_real_ls - 1; x->x_hrir_filename[xindex] = hrirname; SETSYMBOL(x->x_at, x->x_hrir_filename[xindex]); SETSYMBOL(x->x_at+1, x->x_s_hrir[xindex]); outlet_list(x->x_obj.ob_outlet, &s_list, 2, x->x_at); } static void bin_ambi_reduced_decode_fft2_check_HRIR_arrays(t_bin_ambi_reduced_decode_fft2 *x, t_floatarg findex) { int xindex=(int)findex - 1; int j, k, n; int fftsize = x->x_fftsize; int fs2=fftsize/2; t_garray *a; int npoints; t_symbol *hrir; t_float *vec; iemarray_t *vec_hrir, *vec_fade_out_hrir; t_float decr, sum; if(xindex < 0) xindex = 0; if(xindex >= x->x_n_real_ls) xindex = x->x_n_real_ls - 1; hrir = x->x_s_hrir[xindex]; if (!(a = (t_garray *)pd_findbyclass(hrir, garray_class))) error("%s: no such array", hrir->s_name); else if (!iemarray_getarray(a, &npoints, &vec_hrir)) error("%s: bad template for bin_ambi_reduced_decode_fft2", hrir->s_name); else { if(npoints < fftsize) { post("bin_ambi_reduced_decode_fft2-WARNING: %s-array-size: %d < FFT-size: %d", hrir->s_name, npoints, fftsize); } vec = x->x_beg_hrir; vec += xindex * fftsize; if(x->x_beg_fade_out_hrir) { vec_fade_out_hrir = x->x_beg_fade_out_hrir; for(j=0; jx_fftsize; iemarray_t *vec_hrtf_re, *vec_hrtf_im; t_symbol *hrtf_re, *hrtf_im; if(xindex < 0) xindex = 0; if(xindex >= x->x_n_ambi) xindex = x->x_n_ambi - 1; hrtf_re = x->x_s_hrtf_re[xindex]; hrtf_im = x->x_s_hrtf_im[xindex]; if (!(a = (t_garray *)pd_findbyclass(hrtf_re, garray_class))) error("%s: no such array", hrtf_re->s_name); else if (!iemarray_getarray(a, &npoints, &vec_hrtf_re)) error("%s: bad template for bin_ambi_reduced_decode_fft2", hrtf_re->s_name); else if (npoints < fftsize) error("%s: bad array-size: %d", hrtf_re->s_name, npoints); else if (!(a = (t_garray *)pd_findbyclass(hrtf_im, garray_class))) error("%s: no such array", hrtf_im->s_name); else if (!iemarray_getarray(a, &npoints, &vec_hrtf_im)) error("%s: bad template for bin_ambi_reduced_decode_fft2", hrtf_im->s_name); else if (npoints < fftsize) error("%s: bad array-size: %d", hrtf_im->s_name, npoints); else { x->x_beg_hrtf_re[xindex] = vec_hrtf_re; x->x_beg_hrtf_im[xindex] = vec_hrtf_im; } } static void bin_ambi_reduced_decode_fft2_calc_reduced(t_bin_ambi_reduced_decode_fft2 *x, t_floatarg findex) { int xindex=(int)findex - 1; int i, j, k, w_index, w_inc, i_inc, v_index, fs1, fs2; int fftsize = x->x_fftsize; BIN_AMBI_COMPLEX old1, old2, w; BIN_AMBI_COMPLEX *sincos = x->x_sin_cos; BIN_AMBI_COMPLEX *val = x->x_spec;/*weighted decoder-matrix with n_ls lines and n_ambi columns*/ t_float *vec_hrir; iemarray_t*vec_hrtf_re, *vec_hrtf_im; double *dv, *db=x->x_prod3; int n_ambi = x->x_n_ambi; int n_ls = x->x_n_real_ls; t_float mul; if(x->x_seq_ok) { if(xindex < 0) xindex = 0; if(xindex >= n_ambi) xindex = n_ambi - 1; vec_hrtf_re = x->x_beg_hrtf_re[xindex]; vec_hrtf_im = x->x_beg_hrtf_im[xindex]; dv = db + xindex; mul = (t_float)(*dv); vec_hrir = x->x_beg_hrir; for(k=0; kx_beg_hrir; vec_hrir += j * fftsize; for(k=0; k>= 1; } j = 0; for(i=1;i>= 1; } j = j + k; if(i < j) { old1 = val[j]; val[j] = val[i]; val[i] = old1; } } iemarray_setfloat(vec_hrtf_re, 0, val[0].real); for(i = 1; ix_phi_sym; int n_ls = x->x_n_real_ls; int n_ambi = x->x_n_ambi; int n_ambi2 = 2*n_ambi; int *phi=x->x_phi; int *delta=x->x_delta; int *flag=x->x_sym_flag; int i, j, d, p, regular=1; double *dv, *db=x->x_prod3; double a, b, q; int sym_max=0; int pos_sym_counter, neg_sym_counter; char plus_minus[100]; char abc[100]; char onenine[100]; char ten[100]; if(x->x_seq_ok) { for(i=0; ix_n_dim == 2) { strcpy(abc, " WXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXY"); strcpy(ten, " 000000000000000000011111111111111111111"); strcpy(onenine, " 011223344556677889900112233445566778899"); abc[n_ambi+22] = 0; ten[n_ambi+22] = 0; onenine[n_ambi+22] = 0; post(abc); post(ten); post(onenine); } else { strcpy(abc, " AABCABCDEABCDEFGABCDEFGHIABCDEFGHIJKABCDEFGHIJKLM"); strcpy(onenine, " 0111222223333333444444444555555555556666666666666"); abc[n_ambi+22] = 0; onenine[n_ambi+22] = 0; post(abc); post(onenine); } for(i=0; i= 0) && flag[i]) { j = sym[i]; flag[i] = 0; flag[j] = 0; a = dv[i*n_ambi]; b = dv[j*n_ambi]; if((a < 5.0e-4)&&(a > -5.0e-4)&&(b < 5.0e-4)&&(b > -5.0e-4)) { pos_sym_counter++; neg_sym_counter++; } else { q = a / b; if((q < 1.005)&&(q > 0.995)) pos_sym_counter++; else if((q > -1.005)&&(q < -0.995)) neg_sym_counter++; } } } if(pos_sym_counter == sym_max) strcat(plus_minus, "+"); else if(neg_sym_counter == sym_max) strcat(plus_minus, "-"); else { strcat(plus_minus, "?"); regular = 0; } } post("sum of right channel: %s", plus_minus); if(regular) { for(i=0; ix_at, 1.0f); else if(plus_minus[i] == '-') SETFLOAT(x->x_at, 2.0f); SETFLOAT(x->x_at+1, (t_float)(i+1)); outlet_list(x->x_out_sign_sum, &s_list, 2, x->x_at); } } } } static void bin_ambi_reduced_decode_fft2_ambi_weight(t_bin_ambi_reduced_decode_fft2 *x, t_symbol *s, int argc, t_atom *argv) { if(argc > x->x_n_order) { int i, k=0, n=x->x_n_order; double d; x->x_ambi_channel_weight[k] = (double)atom_getfloat(argv++); k++; if(x->x_n_dim == 2) { for(i=1; i<=n; i++) { d = (double)atom_getfloat(argv++); x->x_ambi_channel_weight[k] = d; k++; x->x_ambi_channel_weight[k] = d; k++; } } else { int j, m; for(i=1; i<=n; i++) { d = (double)atom_getfloat(argv++); m = 2*i + 1; for(j=0; jx_ambi_channel_weight[k] = d; k++; } } } } else post("bin_ambi_reduced_decode_fft2-ERROR: ambi_weight needs %d float weights", x->x_n_order+1); } static void bin_ambi_reduced_decode_fft2_sing_range(t_bin_ambi_reduced_decode_fft2 *x, t_floatarg f) { if(f < 0.0f) x->x_sing_range = -(double)f; else x->x_sing_range = (double)f; } static void bin_ambi_reduced_decode_fft2_free(t_bin_ambi_reduced_decode_fft2 *x) { freebytes(x->x_hrir_filename, x->x_n_real_ls * sizeof(t_symbol *)); freebytes(x->x_s_hrir, x->x_n_real_ls * sizeof(t_symbol *)); freebytes(x->x_s_hrtf_re, x->x_n_ambi * sizeof(t_symbol *)); freebytes(x->x_s_hrtf_im, x->x_n_ambi * sizeof(t_symbol *)); freebytes(x->x_inv_work1, x->x_n_ambi * x->x_n_ambi * sizeof(double)); freebytes(x->x_inv_work2, 2 * x->x_n_ambi * x->x_n_ambi * sizeof(double)); freebytes(x->x_inv_buf2, 2 * x->x_n_ambi * sizeof(double)); freebytes(x->x_transp, (x->x_n_real_ls+x->x_n_pht_ls) * x->x_n_ambi * sizeof(double)); freebytes(x->x_ls_encode, (x->x_n_real_ls+x->x_n_pht_ls) * x->x_n_ambi * sizeof(double)); freebytes(x->x_prod2, (x->x_n_real_ls+x->x_n_pht_ls) * x->x_n_ambi * sizeof(double)); freebytes(x->x_prod3, x->x_n_real_ls * x->x_n_ambi * sizeof(double)); freebytes(x->x_ambi_channel_weight, x->x_n_ambi * sizeof(double)); freebytes(x->x_delta, (x->x_n_real_ls+x->x_n_pht_ls) * sizeof(int)); freebytes(x->x_phi, (x->x_n_real_ls+x->x_n_pht_ls) * sizeof(int)); freebytes(x->x_phi_sym, x->x_n_real_ls * sizeof(int)); freebytes(x->x_sym_flag, x->x_n_real_ls * sizeof(int)); freebytes(x->x_spec, x->x_fftsize * sizeof(BIN_AMBI_COMPLEX)); freebytes(x->x_sin_cos, x->x_fftsize * sizeof(BIN_AMBI_COMPLEX)); freebytes(x->x_beg_hrir, x->x_fftsize * x->x_n_real_ls * sizeof(t_float)); freebytes(x->x_beg_hrtf_re, x->x_n_ambi * sizeof(iemarray_t *)); freebytes(x->x_beg_hrtf_im, x->x_n_ambi * sizeof(iemarray_t *)); } /* 1.arg_ int prefix; 2.arg: t_symbol *hrir_name; 3.arg: t_symbol *hrtf_re_name; 4.arg: t_symbol *hrtf_im_name; 5.arg: t_symbol *hrir_fade_out_name; 6.arg: int ambi_order; 7.arg: int dim; 8.arg: int number_of_loudspeakers; 9.arg: int fftsize; */ static void *bin_ambi_reduced_decode_fft2_new(t_symbol *s, int argc, t_atom *argv) { t_bin_ambi_reduced_decode_fft2 *x = (t_bin_ambi_reduced_decode_fft2 *)pd_new(bin_ambi_reduced_decode_fft2_class); char buf[400]; int i, j, fftok, ok=0; int n_order=0, n_dim=0, n_real_ls=0, n_pht_ls=0, n_ambi=0, fftsize=0, prefix=0; t_symbol *s_hrir=gensym("L_HRIR"); t_symbol *s_hrtf_re=gensym("HRTF_re"); t_symbol *s_hrtf_im=gensym("HRTF_im"); t_symbol *s_fade_out_hrir=gensym("HRIR_win"); if((argc >= 10) && IS_A_FLOAT(argv,0) && IS_A_SYMBOL(argv,1) && IS_A_SYMBOL(argv,2) && IS_A_SYMBOL(argv,3) && IS_A_SYMBOL(argv,4) && IS_A_FLOAT(argv,5) && IS_A_FLOAT(argv,6) && IS_A_FLOAT(argv,7) && IS_A_FLOAT(argv,8) && IS_A_FLOAT(argv,9)) { prefix = (int)atom_getintarg(0, argc, argv); s_hrir = (t_symbol *)atom_getsymbolarg(1, argc, argv); s_hrtf_re = (t_symbol *)atom_getsymbolarg(2, argc, argv); s_hrtf_im = (t_symbol *)atom_getsymbolarg(3, argc, argv); s_fade_out_hrir = (t_symbol *)atom_getsymbolarg(4, argc, argv); n_order = (int)atom_getintarg(5, argc, argv); n_dim = (int)atom_getintarg(6, argc, argv); n_real_ls = (int)atom_getintarg(7, argc, argv); n_pht_ls = (int)atom_getintarg(8, argc, argv); fftsize = (int)atom_getintarg(9, argc, argv); ok = 1; } else if((argc >= 10) && IS_A_FLOAT(argv,0) && IS_A_FLOAT(argv,1) && IS_A_FLOAT(argv,2) && IS_A_FLOAT(argv,3) && IS_A_FLOAT(argv,4) && IS_A_FLOAT(argv,5) && IS_A_FLOAT(argv,6) && IS_A_FLOAT(argv,7) && IS_A_FLOAT(argv,8) && IS_A_FLOAT(argv,9)) { prefix = (int)atom_getintarg(0, argc, argv); s_hrir = gensym("L_HRIR"); s_hrtf_re = gensym("HRTF_re"); s_hrtf_im = gensym("HRTF_im"); s_fade_out_hrir = gensym("HRIR_win"); n_order = (int)atom_getintarg(5, argc, argv); n_dim = (int)atom_getintarg(6, argc, argv); n_real_ls = (int)atom_getintarg(7, argc, argv); n_pht_ls = (int)atom_getintarg(8, argc, argv); fftsize = (int)atom_getintarg(9, argc, argv); ok = 1; } if(ok) { if(n_order < 1) n_order = 1; if(n_dim == 3) { if(n_order > 5) n_order = 5; n_ambi = (n_order + 1)*(n_order + 1); } else { if(n_order > 12) n_order = 12; n_dim = 2; n_ambi = 2 * n_order + 1; } if(n_real_ls < 1) n_real_ls = 1; if(n_pht_ls < 0) n_pht_ls = 0; if((n_real_ls+n_pht_ls) < n_ambi) { post("bin_ambi_reduced_decode_fft2-WARNING: Number of all Loudspeakers < Number of Ambisonic-Channels !!!!"); } j = 2; fftok = 0; for(i=0; i<21; i++) { if(j == fftsize) { fftok = 1; i = 22; } j *= 2; } if(!fftok) { fftsize = 512; post("bin_ambi_reduced_decode_fft2-WARNING: fftsize not equal to 2 ^ n !!!"); post(" fftsize set to %d", fftsize); } x->x_n_dim = n_dim; x->x_n_ambi = n_ambi; x->x_n_real_ls = n_real_ls; x->x_n_pht_ls = n_pht_ls; x->x_n_order = n_order; x->x_fftsize = fftsize; x->x_hrir_filename = (t_symbol **)getbytes(x->x_n_real_ls * sizeof(t_symbol *)); x->x_s_hrir = (t_symbol **)getbytes(x->x_n_real_ls * sizeof(t_symbol *)); x->x_s_hrtf_re = (t_symbol **)getbytes(x->x_n_ambi * sizeof(t_symbol *)); x->x_s_hrtf_im = (t_symbol **)getbytes(x->x_n_ambi * sizeof(t_symbol *)); j = x->x_n_real_ls; for(i=0; is_name); x->x_s_hrir[i] = gensym(buf); } for(i=0; is_name); x->x_s_hrtf_re[i] = gensym(buf); sprintf(buf, "%d_%d_%s", prefix, i+1, s_hrtf_im->s_name); x->x_s_hrtf_im[i] = gensym(buf); } sprintf(buf, "%d_%s", prefix, s_fade_out_hrir->s_name); x->x_s_fade_out_hrir = gensym(buf); x->x_inv_work1 = (double *)getbytes(x->x_n_ambi * x->x_n_ambi * sizeof(double)); x->x_inv_work2 = (double *)getbytes(2 * x->x_n_ambi * x->x_n_ambi * sizeof(double)); x->x_inv_buf2 = (double *)getbytes(2 * x->x_n_ambi * sizeof(double)); x->x_transp = (double *)getbytes((x->x_n_real_ls+x->x_n_pht_ls) * x->x_n_ambi * sizeof(double)); x->x_ls_encode = (double *)getbytes((x->x_n_real_ls+x->x_n_pht_ls) * x->x_n_ambi * sizeof(double)); x->x_prod2 = (double *)getbytes((x->x_n_real_ls+x->x_n_pht_ls) * x->x_n_ambi * sizeof(double)); x->x_prod3 = (double *)getbytes(x->x_n_real_ls * x->x_n_ambi * sizeof(double)); x->x_ambi_channel_weight = (double *)getbytes(x->x_n_ambi * sizeof(double)); x->x_delta = (int *)getbytes((x->x_n_real_ls+x->x_n_pht_ls) * sizeof(int)); x->x_phi = (int *)getbytes((x->x_n_real_ls+x->x_n_pht_ls) * sizeof(int)); x->x_phi_sym = (int *)getbytes(x->x_n_real_ls * sizeof(int)); x->x_sym_flag = (int *)getbytes(x->x_n_real_ls * sizeof(int)); x->x_spec = (BIN_AMBI_COMPLEX *)getbytes(x->x_fftsize * sizeof(BIN_AMBI_COMPLEX)); x->x_sin_cos = (BIN_AMBI_COMPLEX *)getbytes(x->x_fftsize * sizeof(BIN_AMBI_COMPLEX)); x->x_beg_fade_out_hrir = 0; x->x_beg_hrir = (t_float *)getbytes(x->x_fftsize * x->x_n_real_ls * sizeof(t_float)); x->x_beg_hrtf_re = (iemarray_t **)getbytes(x->x_n_ambi * sizeof(iemarray_t *)); x->x_beg_hrtf_im = (iemarray_t **)getbytes(x->x_n_ambi * sizeof(iemarray_t *)); x->x_sqrt3 = sqrt(3.0); x->x_sqrt5_2 = sqrt(5.0) / 2.0; x->x_sqrt6_4 = sqrt(6.0) / 4.0; x->x_sqrt10_4 = sqrt(10.0) / 4.0; x->x_sqrt15_2 = sqrt(15.0) / 2.0; x->x_sqrt35_8 = sqrt(35.0) / 8.0; x->x_sqrt70_4 = sqrt(70.0) / 4.0; x->x_sqrt126_16 = sqrt(126.0) / 16.0; x->x_sqrt315_8 = sqrt(315.0) / 8.0; x->x_sqrt105_4 = sqrt(105.0) / 4.0; x->x_pi_over_180 = 4.0 * atan(1.0) / 180.0; x->x_sing_range = 1.0e-10; x->x_seq_ok = 1; for(i=0; ix_ambi_channel_weight[i] = 1.0; bin_ambi_reduced_decode_fft2_init_cos(x); outlet_new(&x->x_obj, &s_list); x->x_out_sign_sum = outlet_new(&x->x_obj, &s_list); return(x); } else { post("bin_ambi_reduced_decode_fft2-ERROR: need 1 float + 4 symbols + 5 floats arguments:"); post(" prefix(unique-number) + hrir_name + hrtf_re_name + hrtf_im_name + hrir_fade_out_name +"); post(" + ambi_order + ambi_dimension + number_of_real_loudspeakers + "); post(" + number_of_phantom_loudspeakers + fftsize"); return(0); } } void bin_ambi_reduced_decode_fft2_setup(void) { bin_ambi_reduced_decode_fft2_class = class_new(gensym("bin_ambi_reduced_decode_fft2"), (t_newmethod)bin_ambi_reduced_decode_fft2_new, (t_method)bin_ambi_reduced_decode_fft2_free, sizeof(t_bin_ambi_reduced_decode_fft2), 0, A_GIMME, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_real_ls, gensym("real_ls"), A_GIMME, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_pht_ls, gensym("pht_ls"), A_GIMME, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_calc_pinv, gensym("calc_pinv"), 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_ipht_ireal_muladd, gensym("ipht_ireal_muladd"), A_GIMME, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_load_HRIR, gensym("load_HRIR"), A_GIMME, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_check_HRIR_arrays, gensym("check_HRIR_arrays"), A_FLOAT, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_check_HRTF_arrays, gensym("check_HRTF_arrays"), A_FLOAT, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_calc_reduced, gensym("calc_reduced"), A_FLOAT, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_calc_sym, gensym("calc_sym"), 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_ambi_weight, gensym("ambi_weight"), A_GIMME, 0); class_addmethod(bin_ambi_reduced_decode_fft2_class, (t_method)bin_ambi_reduced_decode_fft2_sing_range, gensym("sing_range"), A_DEFFLOAT, 0); // class_sethelpsymbol(bin_ambi_reduced_decode_fft2_class, gensym("iemhelp2/bin_ambi_reduced_decode_fft2-help")); } /* Reihenfolge: n_re_ls x bin_ambi_reduced_decode_fft2_real_ls n_im_ls x bin_ambi_reduced_decode_fft2_pht_ls n_re_ls x bin_ambi_reduced_decode_fft2_load_HRIR 1 x bin_ambi_reduced_decode_fft2_calc_pinv n_mir x bin_ambi_reduced_decode_fft2_ipht_ireal_muladd n_re_ls x bin_ambi_reduced_decode_fft2_check_HRIR_arrays n_ambi x bin_ambi_reduced_decode_fft2_check_HRTF_arrays n_ambi x bin_ambi_reduced_decode_fft2_calc_reduced bin_ambi_reduced_decode_fft2_calc_sym */