1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2006 */
#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
/* -- lp1_t~ - slow dynamic lowpass-filter 1. order with tau input --- */
typedef struct _lp1_t_tilde
{
t_object x_obj;
t_float yn1;
t_float c0;
t_float c1;
t_float sr;
t_float cur_t;
t_float delta_t;
t_float end_t;
t_float ticks_per_interpol_time;
t_float rcp_ticks;
t_float interpol_time;
int ticks;
int counter_t;
t_float x_msi;
} t_lp1_t_tilde;
static t_class *lp1_t_tilde_class;
static void lp1_t_tilde_dsp_tick(t_lp1_t_tilde *x)
{
if(x->counter_t)
{
if(x->counter_t <= 1)
{
x->cur_t = x->end_t;
x->counter_t = 0;
}
else
{
x->counter_t--;
x->cur_t += x->delta_t;
}
if(x->cur_t == 0.0f)
x->c1 = 0.0f;
else
x->c1 = exp((x->sr)/x->cur_t);
x->c0 = 1.0f - x->c1;
}
}
static t_int *lp1_t_tilde_perform(t_int *w)
{
t_float *in = (t_float *)(w[1]);
t_float *out = (t_float *)(w[2]);
t_lp1_t_tilde *x = (t_lp1_t_tilde *)(w[3]);
int i, n = (t_int)(w[4]);
t_float yn0, yn1=x->yn1;
t_float c0=x->c0, c1=x->c1;
lp1_t_tilde_dsp_tick(x);
for(i=0; i<n; i++)
{
yn0 = (*in++)*c0 + yn1*c1;
*out++ = yn0;
yn1 = yn0;
}
/* NAN protect */
if(IEM_DENORMAL(yn1))
yn1 = 0.0f;
x->yn1 = yn1;
return(w+5);
}
static t_int *lp1_t_tilde_perf8(t_int *w)
{
t_float *in = (t_float *)(w[1]);
t_float *out = (t_float *)(w[2]);
t_lp1_t_tilde *x = (t_lp1_t_tilde *)(w[3]);
int i, n = (t_int)(w[4]);
t_float yn[9];
t_float c0=x->c0, c1=x->c1;
lp1_t_tilde_dsp_tick(x);
yn[0] = x->yn1;
for(i=0; i<n; i+=8, in+=8, out+=8)
{
yn[1] = in[0]*c0 + yn[0]*c1;
out[0] = yn[1];
yn[2] = in[1]*c0 + yn[1]*c1;
out[1] = yn[2];
yn[3] = in[2]*c0 + yn[2]*c1;
out[2] = yn[3];
yn[4] = in[3]*c0 + yn[3]*c1;
out[3] = yn[4];
yn[5] = in[4]*c0 + yn[4]*c1;
out[4] = yn[5];
yn[6] = in[5]*c0 + yn[5]*c1;
out[5] = yn[6];
yn[7] = in[6]*c0 + yn[6]*c1;
out[6] = yn[7];
yn[8] = in[7]*c0 + yn[7]*c1;
out[7] = yn[8];
yn[0] = yn[8];
}
/* NAN protect */
if(IEM_DENORMAL(yn[0]))
yn[0] = 0.0f;
x->yn1 = yn[0];
return(w+5);
}
static void lp1_t_tilde_ft2(t_lp1_t_tilde *x, t_floatarg t)
{
int i = (int)((x->ticks_per_interpol_time)*t);
x->interpol_time = t;
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (t_float)i;
}
static void lp1_t_tilde_ft1(t_lp1_t_tilde *x, t_floatarg time_const)
{
if(time_const < 0.0f)
time_const = 0.0f;
if(time_const != x->cur_t)
{
x->end_t = time_const;
x->counter_t = x->ticks;
x->delta_t = (time_const - x->cur_t) * x->rcp_ticks;
}
}
static void lp1_t_tilde_dsp(t_lp1_t_tilde *x, t_signal **sp)
{
int i, n=(int)sp[0]->s_n;
x->sr = -1000.0f / (t_float)(sp[0]->s_sr);
x->ticks_per_interpol_time = 0.001f * (t_float)(sp[0]->s_sr) / (t_float)n;
i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (t_float)i;
if(x->cur_t == 0.0f)
x->c1 = 0.0f;
else
x->c1 = exp((x->sr)/x->cur_t);
x->c0 = 1.0f - x->c1;
if(n&7)
dsp_add(lp1_t_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
else
dsp_add(lp1_t_tilde_perf8, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
}
static void *lp1_t_tilde_new(t_symbol *s, int argc, t_atom *argv)
{
t_lp1_t_tilde *x = (t_lp1_t_tilde *)pd_new(lp1_t_tilde_class);
int i;
t_float time_const=0.0f, interpol=0.0f;
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
outlet_new(&x->x_obj, &s_signal);
x->x_msi = 0;
x->counter_t = 1;
x->delta_t = 0.0f;
x->interpol_time = 0.0f;
x->yn1 = 0.0f;
x->sr = -1.0f / 44.1f;
if((argc >= 1)&&IS_A_FLOAT(argv,0))
time_const = (t_float)atom_getfloatarg(0, argc, argv);
if((argc >= 2)&&IS_A_FLOAT(argv,1))
interpol = (t_float)atom_getfloatarg(1, argc, argv);
if(time_const < 0.0f)
time_const = 0.0f;
x->cur_t = time_const;
if(time_const == 0.0f)
x->c1 = 0.0f;
else
x->c1 = exp((x->sr)/time_const);
x->c0 = 1.0f - x->c1;
if(interpol < 0.0f)
interpol = 0.0f;
x->interpol_time = interpol;
x->ticks_per_interpol_time = 0.5f;
i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (t_float)i;
x->end_t = x->cur_t;
return (x);
}
void lp1_t_tilde_setup(void)
{
lp1_t_tilde_class = class_new(gensym("lp1_t~"), (t_newmethod)lp1_t_tilde_new,
0, sizeof(t_lp1_t_tilde), 0, A_GIMME, 0);
CLASS_MAINSIGNALIN(lp1_t_tilde_class, t_lp1_t_tilde, x_msi);
class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_dsp, gensym("dsp"), 0);
class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_ft2, gensym("ft2"), A_FLOAT, 0);
// class_sethelpsymbol(lp1_t_tilde_class, gensym("iemhelp/help-lp1_t~"));
}
|