1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2011 */
#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
/* -- lp1_t~ - slow dynamic lowpass-filter 1. order controlled by time constant tau input --- */
/* -- now with double precision; for low-frequency filters it is important to calculate the filter in double precision -- */
typedef struct _lp1_t_tilde
{
t_object x_obj;
double yn1;
double c0;
double c1;
double sr;
double cur_t;
double delta_t;
double end_t;
t_float ticks_per_interpol_time;
t_float rcp_ticks;
t_float interpol_time;
int ticks;
int counter_t;
t_float x_float_sig_in;
} t_lp1_t_tilde;
static t_class *lp1_t_tilde_class;
static void lp1_t_tilde_dsp_tick(t_lp1_t_tilde *x)
{
if(x->counter_t)
{
if(x->counter_t <= 1)
{
x->cur_t = x->end_t;
x->counter_t = 0;
}
else
{
x->counter_t--;
x->cur_t += x->delta_t;
}
if(x->cur_t == 0.0)
x->c1 = 0.0;
else
x->c1 = exp((x->sr)/x->cur_t);
x->c0 = 1.0 - x->c1;
}
}
static t_int *lp1_t_tilde_perform(t_int *w)
{
t_float *in = (t_float *)(w[1]);
t_float *out = (t_float *)(w[2]);
t_lp1_t_tilde *x = (t_lp1_t_tilde *)(w[3]);
int i, n = (t_int)(w[4]);
double yn0, yn1=x->yn1;
double c0=x->c0, c1=x->c1;
lp1_t_tilde_dsp_tick(x);
for(i=0; i<n; i++)
{
yn0 = (double)(*in++)*c0 + yn1*c1;
*out++ = (t_float)yn0;
yn1 = yn0;
}
/* NAN protect */
//if(IEM_DENORMAL(yn1))
// yn1 = 0.0;
x->yn1 = yn1;
return(w+5);
}
static t_int *lp1_t_tilde_perf8(t_int *w)
{
t_float *in = (t_float *)(w[1]);
t_float *out = (t_float *)(w[2]);
t_lp1_t_tilde *x = (t_lp1_t_tilde *)(w[3]);
int i, n = (t_int)(w[4]);
double ynn[9];
double c0=x->c0, c1=x->c1;
lp1_t_tilde_dsp_tick(x);
ynn[0] = x->yn1;
for(i=0; i<n; i+=8, in+=8, out+=8)
{
ynn[1] = (double)in[0]*c0 + ynn[0]*c1;
out[0] = (t_float)ynn[1];
ynn[2] = (double)in[1]*c0 + ynn[1]*c1;
out[1] = (t_float)ynn[2];
ynn[3] = (double)in[2]*c0 + ynn[2]*c1;
out[2] = (t_float)ynn[3];
ynn[4] = (double)in[3]*c0 + ynn[3]*c1;
out[3] = (t_float)ynn[4];
ynn[5] = (double)in[4]*c0 + ynn[4]*c1;
out[4] = (t_float)ynn[5];
ynn[6] = (double)in[5]*c0 + ynn[5]*c1;
out[5] = (t_float)ynn[6];
ynn[7] = (double)in[6]*c0 + ynn[6]*c1;
out[6] = (t_float)ynn[7];
ynn[8] = (double)in[7]*c0 + ynn[7]*c1;
out[7] = (t_float)ynn[8];
ynn[0] = ynn[8];
}
/* NAN protect */
//if(IEM_DENORMAL(ynn[0]))
// ynn[0] = 0.0f;
x->yn1 = ynn[0];
return(w+5);
}
static void lp1_t_tilde_ft2(t_lp1_t_tilde *x, t_floatarg interpol)
{
int i = (int)((x->ticks_per_interpol_time)*interpol);
x->interpol_time = interpol;
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (t_float)i;
}
static void lp1_t_tilde_ft1(t_lp1_t_tilde *x, t_floatarg f_time_const)
{
double d_time_const;
if(f_time_const < 0.0f)
f_time_const = 0.0f;
d_time_const = (double)f_time_const;
if(d_time_const != x->cur_t)
{
x->end_t = d_time_const;
x->counter_t = x->ticks;
x->delta_t = (d_time_const - x->cur_t) * (double)x->rcp_ticks;
}
}
static void lp1_t_tilde_set(t_lp1_t_tilde *x, t_floatarg w1)
{
x->yn1 = (double)w1;
}
static void lp1_t_tilde_dsp(t_lp1_t_tilde *x, t_signal **sp)
{
int i, n=(int)sp[0]->s_n;
x->sr = -1000.0 / (double)(sp[0]->s_sr);
x->ticks_per_interpol_time = 0.001f * (t_float)(sp[0]->s_sr) / (t_float)n;
i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (t_float)i;
if(x->cur_t == 0.0)
x->c1 = 0.0;
else
x->c1 = exp((x->sr)/x->cur_t);
x->c0 = 1.0 - x->c1;
if(n&7)
dsp_add(lp1_t_tilde_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
else
dsp_add(lp1_t_tilde_perf8, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
}
static void *lp1_t_tilde_new(t_symbol *s, int argc, t_atom *argv)
{
t_lp1_t_tilde *x = (t_lp1_t_tilde *)pd_new(lp1_t_tilde_class);
int i;
t_float interpol=0.0f;
double time_const=0.0;
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
outlet_new(&x->x_obj, &s_signal);
x->x_float_sig_in = 0.0f;
x->counter_t = 1;
x->delta_t = 0.0;
x->interpol_time = 0.0f;
x->yn1 = 0.0;
x->sr = -1.0 / 44.1;
if((argc >= 1)&&IS_A_FLOAT(argv,0))
time_const = (double)atom_getfloatarg(0, argc, argv);
if((argc >= 2)&&IS_A_FLOAT(argv,1))
interpol = (t_float)atom_getfloatarg(1, argc, argv);
if(time_const < 0.0)
time_const = 0.0;
x->cur_t = time_const;
if(time_const == 0.0)
x->c1 = 0.0;
else
x->c1 = exp((x->sr)/time_const);
x->c0 = 1.0 - x->c1;
if(interpol < 0.0f)
interpol = 0.0f;
x->interpol_time = interpol;
x->ticks_per_interpol_time = 0.5f;
i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (t_float)i;
x->end_t = x->cur_t;
return (x);
}
void lp1_t_tilde_setup(void)
{
lp1_t_tilde_class = class_new(gensym("lp1_t~"), (t_newmethod)lp1_t_tilde_new,
0, sizeof(t_lp1_t_tilde), 0, A_GIMME, 0);
CLASS_MAINSIGNALIN(lp1_t_tilde_class, t_lp1_t_tilde, x_float_sig_in);
class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_dsp, gensym("dsp"), 0);
class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_ft1, gensym("ft1"), A_FLOAT, 0);
class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_ft2, gensym("ft2"), A_FLOAT, 0);
class_addmethod(lp1_t_tilde_class, (t_method)lp1_t_tilde_set, gensym("set"), A_FLOAT, 0);
}
|