1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2005 */
#ifdef _MSC_VER
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
/* -- lp1_t~ - slow dynamic lowpass-filter 1. order with tau input --- */
typedef struct siglp1_t
{
t_object x_obj;
float yn1;
float c0;
float c1;
float sr;
float cur_t;
float delta_t;
float end_t;
float ticks_per_interpol_time;
float rcp_ticks;
float interpol_time;
int ticks;
int counter_t;
float x_msi;
} t_siglp1_t;
t_class *siglp1_t_class;
static void siglp1_t_dsp_tick(t_siglp1_t *x)
{
if(x->counter_t)
{
if(x->counter_t <= 1)
{
x->cur_t = x->end_t;
x->counter_t = 0;
}
else
{
x->counter_t--;
x->cur_t += x->delta_t;
}
if(x->cur_t == 0.0f)
x->c1 = 0.0f;
else
x->c1 = exp((x->sr)/x->cur_t);
x->c0 = 1.0f - x->c1;
}
}
static t_int *siglp1_t_perform(t_int *w)
{
float *in = (float *)(w[1]);
float *out = (float *)(w[2]);
t_siglp1_t *x = (t_siglp1_t *)(w[3]);
int i, n = (t_int)(w[4]);
float yn0, yn1=x->yn1;
float c0=x->c0, c1=x->c1;
siglp1_t_dsp_tick(x);
for(i=0; i<n; i++)
{
yn0 = (*in++)*c0 + yn1*c1;
*out++ = yn0;
yn1 = yn0;
}
/* NAN protect */
if(IEM_DENORMAL(yn1))
yn1 = 0.0f;
x->yn1 = yn1;
return(w+5);
}
static t_int *siglp1_t_perf8(t_int *w)
{
float *in = (float *)(w[1]);
float *out = (float *)(w[2]);
t_siglp1_t *x = (t_siglp1_t *)(w[3]);
int i, n = (t_int)(w[4]);
float yn[9];
float c0=x->c0, c1=x->c1;
siglp1_t_dsp_tick(x);
yn[0] = x->yn1;
for(i=0; i<n; i+=8, in+=8, out+=8)
{
yn[1] = in[0]*c0 + yn[0]*c1;
out[0] = yn[1];
yn[2] = in[1]*c0 + yn[1]*c1;
out[1] = yn[2];
yn[3] = in[2]*c0 + yn[2]*c1;
out[2] = yn[3];
yn[4] = in[3]*c0 + yn[3]*c1;
out[3] = yn[4];
yn[5] = in[4]*c0 + yn[4]*c1;
out[4] = yn[5];
yn[6] = in[5]*c0 + yn[5]*c1;
out[5] = yn[6];
yn[7] = in[6]*c0 + yn[6]*c1;
out[6] = yn[7];
yn[8] = in[7]*c0 + yn[7]*c1;
out[7] = yn[8];
yn[0] = yn[8];
}
/* NAN protect */
if(IEM_DENORMAL(yn[0]))
yn[0] = 0.0f;
x->yn1 = yn[0];
return(w+5);
}
static void siglp1_t_ft2(t_siglp1_t *x, t_floatarg t)
{
int i = (int)((x->ticks_per_interpol_time)*t);
x->interpol_time = t;
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (float)i;
}
static void siglp1_t_ft1(t_siglp1_t *x, t_floatarg time_const)
{
if(time_const < 0.0f)
time_const = 0.0f;
if(time_const != x->cur_t)
{
x->end_t = time_const;
x->counter_t = x->ticks;
x->delta_t = (time_const - x->cur_t) * x->rcp_ticks;
}
}
static void siglp1_t_dsp(t_siglp1_t *x, t_signal **sp)
{
int i, n=(int)sp[0]->s_n;
x->sr = -1000.0f / (float)(sp[0]->s_sr);
x->ticks_per_interpol_time = 0.001f * (float)(sp[0]->s_sr) / (float)n;
i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (float)i;
if(x->cur_t == 0.0f)
x->c1 = 0.0f;
else
x->c1 = exp((x->sr)/x->cur_t);
x->c0 = 1.0f - x->c1;
if(n&7)
dsp_add(siglp1_t_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
else
dsp_add(siglp1_t_perf8, 4, sp[0]->s_vec, sp[1]->s_vec, x, n);
}
static void *siglp1_t_new(t_symbol *s, int argc, t_atom *argv)
{
t_siglp1_t *x = (t_siglp1_t *)pd_new(siglp1_t_class);
int i;
float time_const=0.0f, interpol=0.0f;
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft2"));
outlet_new(&x->x_obj, &s_signal);
x->x_msi = 0;
x->counter_t = 1;
x->delta_t = 0.0f;
x->interpol_time = 0.0f;
x->yn1 = 0.0f;
x->sr = -1.0f / 44.1f;
if((argc >= 1)&&IS_A_FLOAT(argv,0))
time_const = (float)atom_getfloatarg(0, argc, argv);
if((argc >= 2)&&IS_A_FLOAT(argv,1))
interpol = (float)atom_getfloatarg(1, argc, argv);
if(time_const < 0.0f)
time_const = 0.0f;
x->cur_t = time_const;
if(time_const == 0.0f)
x->c1 = 0.0f;
else
x->c1 = exp((x->sr)/time_const);
x->c0 = 1.0f - x->c1;
if(interpol < 0.0f)
interpol = 0.0f;
x->interpol_time = interpol;
x->ticks_per_interpol_time = 0.5f;
i = (int)((x->ticks_per_interpol_time)*(x->interpol_time));
if(i <= 0)
i = 1;
x->ticks = i;
x->rcp_ticks = 1.0f / (float)i;
x->end_t = x->cur_t;
return (x);
}
void siglp1_t_setup(void)
{
siglp1_t_class = class_new(gensym("lp1_t~"), (t_newmethod)siglp1_t_new,
0, sizeof(t_siglp1_t), 0, A_GIMME, 0);
CLASS_MAINSIGNALIN(siglp1_t_class, t_siglp1_t, x_msi);
class_addmethod(siglp1_t_class, (t_method)siglp1_t_dsp, gensym("dsp"), 0);
class_addmethod(siglp1_t_class, (t_method)siglp1_t_ft1, gensym("ft1"), A_FLOAT, 0);
class_addmethod(siglp1_t_class, (t_method)siglp1_t_ft2, gensym("ft2"), A_FLOAT, 0);
class_sethelpsymbol(siglp1_t_class, gensym("iemhelp/help-lp1_t~"));
}
|