1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2005 */
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
#include "m_pd.h"
#include "iemlib.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
/* ---------------- prvu~ - simple peak&rms-vu-meter. ----------------- */
typedef struct sigprvu
{
t_object x_obj;
t_atom x_at[3];
void *x_clock_metro;
int x_metro_time;
void *x_clock_hold;
int x_hold_time;
float x_cur_peak;
float x_old_peak;
float x_hold_peak;
int x_hold;
float x_sum_rms;
float x_old_rms;
float x_rcp;
float x_sr;
float x_threshold_over;
int x_overflow_counter;
float x_release_time;
float x_c1;
int x_started;
float x_msi;
} t_sigprvu;
t_class *sigprvu_class;
static void sigprvu_tick_metro(t_sigprvu *x);
static void sigprvu_tick_hold(t_sigprvu *x);
static void sigprvu_reset(t_sigprvu *x)
{
x->x_at[0].a_w.w_float = -99.9f;
x->x_at[1].a_w.w_float = -99.9f;
x->x_at[2].a_w.w_float = 0.0f;
outlet_list(x->x_obj.ob_outlet, &s_list, 3, x->x_at);
x->x_overflow_counter = 0;
x->x_cur_peak = 0.0f;
x->x_old_peak = 0.0f;
x->x_hold_peak = 0.0f;
x->x_sum_rms = 0.0f;
x->x_old_rms = 0.0f;
x->x_hold = 0;
clock_unset(x->x_clock_hold);
clock_delay(x->x_clock_metro, x->x_metro_time);
}
static void sigprvu_stop(t_sigprvu *x)
{
clock_unset(x->x_clock_metro);
x->x_started = 0;
}
static void sigprvu_start(t_sigprvu *x)
{
clock_delay(x->x_clock_metro, x->x_metro_time);
x->x_started = 1;
}
static void sigprvu_float(t_sigprvu *x, t_floatarg f)
{
if(f == 0.0)
{
clock_unset(x->x_clock_metro);
x->x_started = 0;
}
else
{
clock_delay(x->x_clock_metro, x->x_metro_time);
x->x_started = 1;
}
}
static void sigprvu_t_release(t_sigprvu *x, t_floatarg release_time)
{
if(release_time <= 20.0f)
release_time = 20.0f;
x->x_release_time = release_time;
x->x_c1 = exp(-2.0*(float)x->x_metro_time/x->x_release_time);
}
static void sigprvu_t_metro(t_sigprvu *x, t_floatarg metro_time)
{
if(metro_time <= 20.0f)
metro_time = 20.0f;
x->x_metro_time = (int)metro_time;
x->x_c1 = exp(-2.0*(float)x->x_metro_time/x->x_release_time);
x->x_rcp = 1.0f/(x->x_sr*(float)x->x_metro_time);
}
static void sigprvu_t_hold(t_sigprvu *x, t_floatarg hold_time)
{
if(hold_time <= 20.0f)
hold_time = 20.0f;
x->x_hold_time = (int)hold_time;
}
static void sigprvu_threshold(t_sigprvu *x, t_floatarg thresh)
{
x->x_threshold_over = thresh;
}
static t_int *sigprvu_perform(t_int *w)
{
float *in = (float *)(w[1]);
t_sigprvu *x = (t_sigprvu *)(w[2]);
int n = (int)(w[3]);
float peak = x->x_cur_peak, pow, sum=x->x_sum_rms;
int i;
if(x->x_started)
{
for(i=0; i<n; i++)
{
pow = in[i]*in[i];
if(pow > peak)
peak = pow;
sum += pow;
}
x->x_cur_peak = peak;
x->x_sum_rms = sum;
}
return(w+4);
}
static void sigprvu_dsp(t_sigprvu *x, t_signal **sp)
{
x->x_sr = 0.001*(float)sp[0]->s_sr;
x->x_rcp = 1.0f/(x->x_sr*(float)x->x_metro_time);
dsp_add(sigprvu_perform, 3, sp[0]->s_vec, x, sp[0]->s_n);
clock_delay(x->x_clock_metro, x->x_metro_time);
}
static void sigprvu_tick_hold(t_sigprvu *x)
{
x->x_hold = 0;
x->x_hold_peak = x->x_old_peak;
}
static void sigprvu_tick_metro(t_sigprvu *x)
{
float dbr, dbp, cur_rms, c1=x->x_c1;
x->x_old_peak *= c1;
/* NAN protect */
if(IEM_DENORMAL(x->x_old_peak))
x->x_old_peak = 0.0f;
if(x->x_cur_peak > x->x_old_peak)
x->x_old_peak = x->x_cur_peak;
if(x->x_old_peak > x->x_hold_peak)
{
x->x_hold = 1;
x->x_hold_peak = x->x_old_peak;
clock_delay(x->x_clock_hold, x->x_hold_time);
}
if(!x->x_hold)
x->x_hold_peak = x->x_old_peak;
if(x->x_hold_peak <= 0.0000000001f)
dbp = -99.9f;
else if(x->x_hold_peak > 1000000.0f)
{
dbp = 60.0f;
x->x_hold_peak = 1000000.0f;
x->x_old_peak = 1000000.0f;
}
else
dbp = 4.3429448195f*log(x->x_hold_peak);
x->x_cur_peak = 0.0f;
if(dbp >= x->x_threshold_over)
x->x_overflow_counter++;
x->x_at[1].a_w.w_float = dbp;
x->x_at[2].a_w.w_float = (float)x->x_overflow_counter;
cur_rms = (1.0f - c1)*x->x_sum_rms*x->x_rcp + c1*x->x_old_rms;
/* NAN protect */
if(IEM_DENORMAL(cur_rms))
cur_rms = 0.0f;
if(cur_rms <= 0.0000000001f)
dbr = -99.9f;
else if(cur_rms > 1000000.0f)
{
dbr = 60.0f;
x->x_old_rms = 1000000.0f;
}
else
dbr = 4.3429448195f*log(cur_rms);
x->x_sum_rms = 0.0f;
x->x_old_rms = cur_rms;
x->x_at[0].a_w.w_float = dbr;
outlet_list(x->x_obj.ob_outlet, &s_list, 3, x->x_at);
clock_delay(x->x_clock_metro, x->x_metro_time);
}
static void sigprvu_ff(t_sigprvu *x)
{
clock_free(x->x_clock_metro);
clock_free(x->x_clock_hold);
}
static void *sigprvu_new(t_floatarg metro_time, t_floatarg hold_time,
t_floatarg release_time, t_floatarg threshold)
{
t_sigprvu *x;
float t;
int i;
x = (t_sigprvu *)pd_new(sigprvu_class);
if(metro_time <= 0.0f)
metro_time = 300.0f;
if(metro_time <= 20.0f)
metro_time = 20.0f;
if(release_time <= 0.0f)
release_time = 300.0f;
if(release_time <= 20.0f)
release_time = 20.0f;
if(hold_time <= 0.0f)
hold_time = 1000.0f;
if(hold_time <= 20.0f)
hold_time = 20.0f;
if(threshold == 0.0f)
threshold = -0.01f;
x->x_metro_time = (int)metro_time;
x->x_release_time = release_time;
x->x_hold_time = (int)hold_time;
x->x_threshold_over = threshold;
x->x_c1 = exp(-2.0*(float)x->x_metro_time/x->x_release_time);
x->x_cur_peak = 0.0f;
x->x_old_peak = 0.0f;
x->x_hold_peak = 0.0f;
x->x_hold = 0;
x->x_sum_rms = 0.0f;
x->x_old_rms = 0.0f;
x->x_sr = 44.1f;
x->x_rcp = 1.0f/(x->x_sr*(float)x->x_metro_time);
x->x_overflow_counter = 0;
x->x_clock_metro = clock_new(x, (t_method)sigprvu_tick_metro);
x->x_clock_hold = clock_new(x, (t_method)sigprvu_tick_hold);
x->x_started = 1;
outlet_new(&x->x_obj, &s_list);
x->x_at[0].a_type = A_FLOAT;
x->x_at[1].a_type = A_FLOAT;
x->x_at[2].a_type = A_FLOAT;
x->x_msi = 0.0f;
return(x);
}
void sigprvu_setup(void)
{
sigprvu_class = class_new(gensym("prvu~"), (t_newmethod)sigprvu_new,
(t_method)sigprvu_ff, sizeof(t_sigprvu), 0,
A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(sigprvu_class, t_sigprvu, x_msi);
class_addmethod(sigprvu_class, (t_method)sigprvu_dsp, gensym("dsp"), 0);
class_addfloat(sigprvu_class, sigprvu_float);
class_addmethod(sigprvu_class, (t_method)sigprvu_reset, gensym("reset"), 0);
class_addmethod(sigprvu_class, (t_method)sigprvu_start, gensym("start"), 0);
class_addmethod(sigprvu_class, (t_method)sigprvu_stop, gensym("stop"), 0);
class_addmethod(sigprvu_class, (t_method)sigprvu_t_release, gensym("t_release"), A_FLOAT, 0);
class_addmethod(sigprvu_class, (t_method)sigprvu_t_metro, gensym("t_metro"), A_FLOAT, 0);
class_addmethod(sigprvu_class, (t_method)sigprvu_t_hold, gensym("t_hold"), A_FLOAT, 0);
class_addmethod(sigprvu_class, (t_method)sigprvu_threshold, gensym("threshold"), A_FLOAT, 0);
class_sethelpsymbol(sigprvu_class, gensym("iemhelp/help-prvu~"));
}
|