1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
iemlib1 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2005 */
#include "m_pd.h"
#include "iemlib.h"
/* --- sin_phase~ - output the phase-difference between --- */
/* --- 2 sinewaves with the same frequency in samples ----- */
/* --- as a signal ---------------------------------------- */
typedef struct _sin_phase_tilde
{
t_object x_obj;
t_float x_prev1;
t_float x_prev2;
t_float x_cur_out;
int x_counter1;
int x_counter2;
int x_state1;
int x_state2;
t_float x_msi;
} t_sin_phase_tilde;
t_class *sin_phase_tilde_class;
static t_int *sin_phase_tilde_perform(t_int *w)
{
t_float *in1 = (t_float *)(w[1]);
t_float *in2 = (t_float *)(w[2]);
t_float *out = (t_float *)(w[3]);
t_sin_phase_tilde *x = (t_sin_phase_tilde *)(w[4]);
int i, n = (t_int)(w[5]);
t_float prev1=x->x_prev1;
t_float prev2=x->x_prev2;
t_float cur_out=x->x_cur_out;
int counter1=x->x_counter1;
int counter2=x->x_counter2;
int state1=x->x_state1;
int state2=x->x_state2;
for(i=0; i<n; i++)
{
if((in1[i] >= 0.0f) && (prev1 < 0.0f))
{/* pos. zero cross of sig_in_1 */
state1 = 1;
counter1 = 0;
}
else if((in1[i] < 0.0f) && (prev1 >= 0.0f))
{/* neg. zero cross of sig_in_1 */
state2 = 1;
counter2 = 0;
}
if((in2[i] >= 0.0f) && (prev2 < 0.0f))
{/* pos. zero cross of sig_in_2 */
state1 = 0;
cur_out = (t_float)(counter1);
counter1 = 0;
}
else if((in2[i] < 0.0f) && (prev2 >= 0.0f))
{/* neg. zero cross of sig_in_2 */
state2 = 0;
cur_out = (t_float)(counter2);
counter2 = 0;
}
if(state1)
counter1++;
if(state2)
counter2++;
prev1 = in1[i];
prev2 = in2[i];
out[i] = cur_out;
}
x->x_prev1 = prev1;
x->x_prev2 = prev2;
x->x_cur_out = cur_out;
x->x_counter1 = counter1;
x->x_counter2 = counter2;
x->x_state1 = state1;
x->x_state2 = state2;
return(w+6);
}
static void sin_phase_tilde_dsp(t_sin_phase_tilde *x, t_signal **sp)
{
dsp_add(sin_phase_tilde_perform, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, x, sp[0]->s_n);
}
static void *sin_phase_tilde_new(void)
{
t_sin_phase_tilde *x = (t_sin_phase_tilde *)pd_new(sin_phase_tilde_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
outlet_new(&x->x_obj, &s_signal);
x->x_prev1 = 0.0f;
x->x_prev2 = 0.0f;
x->x_cur_out = 0.0f;
x->x_counter1 = 0;
x->x_counter2 = 0;
x->x_state1 = 0;
x->x_state2 = 0;
x->x_msi = 0;
return (x);
}
void sin_phase_tilde_setup(void)
{
sin_phase_tilde_class = class_new(gensym("sin_phase~"), (t_newmethod)sin_phase_tilde_new,
0, sizeof(t_sin_phase_tilde), 0, 0);
CLASS_MAINSIGNALIN(sin_phase_tilde_class, t_sin_phase_tilde, x_msi);
class_addmethod(sin_phase_tilde_class, (t_method)sin_phase_tilde_dsp, gensym("dsp"), 0);
class_sethelpsymbol(sin_phase_tilde_class, gensym("iemhelp/help-sin_phase~"));
}
|