1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
iemlib2 written by Thomas Musil, Copyright (c) IEM KUG Graz Austria 2000 - 2005 */
#include "m_pd.h"
#include "iemlib.h"
/* -------------------- LFO_noise~ --------------------- */
/* ---- outputs a 2 point interpolated white noise ----- */
/* -- with lower cutoff frequency than 0.5 samplerate -- */
static t_class *LFO_noise_tilde_class;
typedef struct _LFO_noise_tilde
{
t_object x_obj;
double x_range;
double x_rcp_range;
unsigned int x_state;
t_float x_fact;
t_float x_incr;
t_float x_y1;
t_float x_y2;
t_float x_phase;
} t_LFO_noise_tilde;
static int LFO_noise_makeseed(void)
{
static unsigned int LFO_noise_nextseed = 1489853723;
LFO_noise_nextseed = LFO_noise_nextseed * 435898247 + 938284287;
return(LFO_noise_nextseed & 0x7fffffff);
}
static float LFO_noise_new_rand(t_LFO_noise_tilde *x)
{
unsigned int state = x->x_state;
double new_val, range = x->x_range;
x->x_state = state = state * 472940017 + 832416023;
new_val = range * ((double)state) * (1./4294967296.);
if(new_val >= range)
new_val = range-1;
new_val -= 32767.0;
return(new_val*(1.0/32767.0));
}
static void *LFO_noise_new(t_float freq)
{
t_LFO_noise_tilde *x = (t_LFO_noise_tilde *)pd_new(LFO_noise_tilde_class);
x->x_range = 65535.0;
x->x_rcp_range = (double)x->x_range * (1.0/4294967296.0);
x->x_state = LFO_noise_makeseed();
x->x_fact = 2.0f / 44100.0f;
x->x_incr = freq * x->x_fact;
if(x->x_incr < 0.0f)
x->x_incr = 0.0f;
else if(x->x_incr > 0.1f)
x->x_incr = 0.1f;
x->x_y1 = LFO_noise_new_rand(x);
x->x_y2 = LFO_noise_new_rand(x);
x->x_phase = 0.0f;
outlet_new(&x->x_obj, gensym("signal"));
return (x);
}
static t_int *LFO_noise_perform(t_int *w)
{
t_float *out = (t_float *)(w[1]);
t_LFO_noise_tilde *x = (t_LFO_noise_tilde *)(w[2]);
int n = (int)(w[3]);
t_float phase = x->x_phase;
t_float x_y1 = x->x_y1;
t_float x_y2 = x->x_y2;
t_float incr = x->x_incr;
while(n--)
{
if(phase > 1.0f)
{
x_y1 = x_y2;
x_y2 = LFO_noise_new_rand(x);
phase -= 1.0;
}
*out++ = (x_y2 - x_y1) * phase + x_y1;
phase += incr;
}
x->x_phase = phase;
x->x_y1 = x_y1;
x->x_y2 = x_y2;
return (w+4);
}
static void LFO_noise_float(t_LFO_noise_tilde *x, t_floatarg freq)
{
x->x_incr = freq * x->x_fact;
if(x->x_incr < 0.0f)
x->x_incr = 0.0f;
else if(x->x_incr > 0.1f)
x->x_incr = 0.1f;
}
static void LFO_noise_dsp(t_LFO_noise_tilde *x, t_signal **sp)
{
x->x_fact = 2.0f / sp[0]->s_sr;
dsp_add(LFO_noise_perform, 3, sp[0]->s_vec, x, sp[0]->s_n);
}
void LFO_noise_tilde_setup(void)
{
LFO_noise_tilde_class = class_new(gensym("LFO_noise~"),
(t_newmethod)LFO_noise_new, 0,
sizeof(t_LFO_noise_tilde), 0, A_DEFFLOAT, 0);
class_addmethod(LFO_noise_tilde_class, (t_method)LFO_noise_dsp,
gensym("dsp"), 0);
class_addfloat(LFO_noise_tilde_class, (t_method)LFO_noise_float);
class_sethelpsymbol(LFO_noise_tilde_class, gensym("iemhelp/help-LFO_noise~"));
}
|