diff options
author | Franz Zotter <fzotter@users.sourceforge.net> | 2009-01-14 10:58:32 +0000 |
---|---|---|
committer | Franz Zotter <fzotter@users.sourceforge.net> | 2009-01-14 10:58:32 +0000 |
commit | 92b9deaf8d7c2a96c3977e1204341d6b6feb1fc1 (patch) | |
tree | 6e17422343f2a63bba88422d02e5d06fdf8d7baf /doc | |
parent | 96987170c95a18b779cd2bfc316d88d754db4b8e (diff) |
renamed [mtx_sh] to [mtx_spherical_harmonics].
svn path=/trunk/externals/iem/iemmatrix/; revision=10549
Diffstat (limited to 'doc')
-rw-r--r-- | doc/mtx_sh-help.pd | 27 | ||||
-rw-r--r-- | doc/mtx_spherical_harmonics-help.pd | 29 |
2 files changed, 29 insertions, 27 deletions
diff --git a/doc/mtx_sh-help.pd b/doc/mtx_sh-help.pd deleted file mode 100644 index e4a74ef..0000000 --- a/doc/mtx_sh-help.pd +++ /dev/null @@ -1,27 +0,0 @@ -#N canvas 61 39 921 503 10; -#X msg 96 97 matrix 2 1 0 0; -#X obj 184 163 mtx_rand; -#X msg 187 141 2 10; -#X obj 96 197 mtx_print; -#X obj 96 157 mtx_sh 1; -#X text 95 54 [mtx_sh] spherical harmonics evaluated at a set of points -given in phi and theta coordinates.; -#X text 306 117 [mtx_sh] requires a numerical creation argument nmax -specifyiing the maximum order 0<=n<=nmax.; -#X text 305 160 for an L points 2xL input matrix \, [mtx_sh] evaluates -the (nmax+2)^2 spherical harmonics at L points and delivers an Lx(nmax+2)^2 -output matrix.; -#X text 527 347 Franz Zotter \, 2009; -#X text 150 226 for -n<=m<=n:; -#X text 188 258 Y_n^m(phi \, theta) = N_n^m * sin(m*phi) * P_n^m(cos(theta)) -; -#X text 188 242 Y_n^m(phi \, theta) = N_n^m * cos(m*phi) * P_n^m(cos(theta)) -; -#X text 641 241 for m>=0; -#X text 640 257 for m< 0; -#X text 147 291 The order of the harmonics in the output columns is -specified by the linear index k=n^2+n+m+1.; -#X connect 0 0 4 0; -#X connect 1 0 4 0; -#X connect 2 0 1 0; -#X connect 4 0 3 0; diff --git a/doc/mtx_spherical_harmonics-help.pd b/doc/mtx_spherical_harmonics-help.pd new file mode 100644 index 0000000..597ef7b --- /dev/null +++ b/doc/mtx_spherical_harmonics-help.pd @@ -0,0 +1,29 @@ +#N canvas 61 39 921 503 10; +#X msg 96 97 matrix 2 1 0 0; +#X obj 206 132 mtx_rand; +#X msg 209 110 2 10; +#X obj 96 197 mtx_print; +#X text 537 377 Franz Zotter \, 2009; +#X text 150 226 for -n<=m<=n:; +#X text 188 258 Y_n^m(phi \, theta) = N_n^m * sin(m*phi) * P_n^m(cos(theta)) +; +#X text 188 242 Y_n^m(phi \, theta) = N_n^m * cos(m*phi) * P_n^m(cos(theta)) +; +#X text 641 241 for m>=0; +#X text 640 257 for m< 0; +#X text 147 291 The order of the harmonics in the output columns is +specified by the linear index k=n^2+n+m+1.; +#X text 95 54 [mtx_spherical_harmonics] spherical harmonics evaluated +at a set of points given in phi and theta coordinates.; +#X text 146 328 [mtx_spherical_harmonics] uses fully normalized Y_n^m +with Condon-Shortley phase; +#X text 305 160 for an L points 2xL input matrix \, [mtx_spherical_harmonics] +evaluates the (nmax+2)^2 spherical harmonics at L points and delivers +an Lx(nmax+2)^2 output matrix.; +#X text 309 118 [mtx_spherical_harmonics] requires a numerical creation +argument <nmax> specifyiing the maximum order 0<=n<=nmax.; +#X obj 96 157 mtx_spherical_harmonics 2; +#X connect 0 0 15 0; +#X connect 1 0 15 0; +#X connect 2 0 1 0; +#X connect 15 0 3 0; |