aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorFranz Zotter <fzotter@users.sourceforge.net>2009-01-14 10:58:32 +0000
committerFranz Zotter <fzotter@users.sourceforge.net>2009-01-14 10:58:32 +0000
commit92b9deaf8d7c2a96c3977e1204341d6b6feb1fc1 (patch)
tree6e17422343f2a63bba88422d02e5d06fdf8d7baf /doc
parent96987170c95a18b779cd2bfc316d88d754db4b8e (diff)
renamed [mtx_sh] to [mtx_spherical_harmonics].
svn path=/trunk/externals/iem/iemmatrix/; revision=10549
Diffstat (limited to 'doc')
-rw-r--r--doc/mtx_sh-help.pd27
-rw-r--r--doc/mtx_spherical_harmonics-help.pd29
2 files changed, 29 insertions, 27 deletions
diff --git a/doc/mtx_sh-help.pd b/doc/mtx_sh-help.pd
deleted file mode 100644
index e4a74ef..0000000
--- a/doc/mtx_sh-help.pd
+++ /dev/null
@@ -1,27 +0,0 @@
-#N canvas 61 39 921 503 10;
-#X msg 96 97 matrix 2 1 0 0;
-#X obj 184 163 mtx_rand;
-#X msg 187 141 2 10;
-#X obj 96 197 mtx_print;
-#X obj 96 157 mtx_sh 1;
-#X text 95 54 [mtx_sh] spherical harmonics evaluated at a set of points
-given in phi and theta coordinates.;
-#X text 306 117 [mtx_sh] requires a numerical creation argument nmax
-specifyiing the maximum order 0<=n<=nmax.;
-#X text 305 160 for an L points 2xL input matrix \, [mtx_sh] evaluates
-the (nmax+2)^2 spherical harmonics at L points and delivers an Lx(nmax+2)^2
-output matrix.;
-#X text 527 347 Franz Zotter \, 2009;
-#X text 150 226 for -n<=m<=n:;
-#X text 188 258 Y_n^m(phi \, theta) = N_n^m * sin(m*phi) * P_n^m(cos(theta))
-;
-#X text 188 242 Y_n^m(phi \, theta) = N_n^m * cos(m*phi) * P_n^m(cos(theta))
-;
-#X text 641 241 for m>=0;
-#X text 640 257 for m< 0;
-#X text 147 291 The order of the harmonics in the output columns is
-specified by the linear index k=n^2+n+m+1.;
-#X connect 0 0 4 0;
-#X connect 1 0 4 0;
-#X connect 2 0 1 0;
-#X connect 4 0 3 0;
diff --git a/doc/mtx_spherical_harmonics-help.pd b/doc/mtx_spherical_harmonics-help.pd
new file mode 100644
index 0000000..597ef7b
--- /dev/null
+++ b/doc/mtx_spherical_harmonics-help.pd
@@ -0,0 +1,29 @@
+#N canvas 61 39 921 503 10;
+#X msg 96 97 matrix 2 1 0 0;
+#X obj 206 132 mtx_rand;
+#X msg 209 110 2 10;
+#X obj 96 197 mtx_print;
+#X text 537 377 Franz Zotter \, 2009;
+#X text 150 226 for -n<=m<=n:;
+#X text 188 258 Y_n^m(phi \, theta) = N_n^m * sin(m*phi) * P_n^m(cos(theta))
+;
+#X text 188 242 Y_n^m(phi \, theta) = N_n^m * cos(m*phi) * P_n^m(cos(theta))
+;
+#X text 641 241 for m>=0;
+#X text 640 257 for m< 0;
+#X text 147 291 The order of the harmonics in the output columns is
+specified by the linear index k=n^2+n+m+1.;
+#X text 95 54 [mtx_spherical_harmonics] spherical harmonics evaluated
+at a set of points given in phi and theta coordinates.;
+#X text 146 328 [mtx_spherical_harmonics] uses fully normalized Y_n^m
+with Condon-Shortley phase;
+#X text 305 160 for an L points 2xL input matrix \, [mtx_spherical_harmonics]
+evaluates the (nmax+2)^2 spherical harmonics at L points and delivers
+an Lx(nmax+2)^2 output matrix.;
+#X text 309 118 [mtx_spherical_harmonics] requires a numerical creation
+argument <nmax> specifyiing the maximum order 0<=n<=nmax.;
+#X obj 96 157 mtx_spherical_harmonics 2;
+#X connect 0 0 15 0;
+#X connect 1 0 15 0;
+#X connect 2 0 1 0;
+#X connect 15 0 3 0;