/* * iemmatrix * * objects for manipulating simple matrices * mostly refering to matlab/octave matrix functions * * Copyright (c) IOhannes m zmölnig, forum::für::umläute * IEM, Graz, Austria * * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. * */ #include "iemmatrix.h" /* mtx_add mtx_+ mtx_mul mtx_* mtx_.* mtx_./ */ /* -------------------------------------------------------------- */ /* matrix math */ void mtx_bin_matrix2(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row = atom_getfloat(argv); int col = atom_getfloat(argv+1); if (argc<2){post("mtx_bin2: crippled matrix"); return;} if ((col<1)||(row<1)) {post("mtx_bin2: invalid dimensions %dx%d", row,col); return;} if (col*row+2>argc){ post("mtx_bin2: sparse matrix not yet supported : use \"mtx_check\""); return;} if (row*col!=x->m2.row*x->m2.col) { freebytes(x->m2.atombuffer, (x->m2.row*x->m2.col+2)*sizeof(t_atom)); x->m2.atombuffer=copybytes(argv,(row*col+2)*sizeof(t_atom)); }else memcpy(x->m2.atombuffer, argv, (row*col+2)*sizeof(t_atom)); setdimen(&x->m2, row, col); } void mtx_binmtx_bang(t_mtx_binmtx *x) { if((&x->m)&&(x->m.atombuffer)) outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), x->m.col*x->m.row+2, x->m.atombuffer); } void mtx_binmtx_free(t_mtx_binmtx *x) { matrix_free(&x->m); matrix_free(&x->m2); } void mtx_binscalar_bang(t_mtx_binscalar *x) { if((&x->m)&&(x->m.atombuffer)) outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), x->m.col*x->m.row+2, x->m.atombuffer); } void mtx_binscalar_free(t_mtx_binscalar *x) { matrix_free(&x->m); } /* mtx_add */ static t_class *mtx_add_class, *mtx_addscalar_class; static void mtx_addscalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc-2; int row=atom_getfloat(argv), col=atom_getfloat(argv+1); t_float offset=x->f; t_atom *buf; t_atom *ap=argv+2; if(argc<2){post("mtx_add: crippled matrix");return; } adjustsize(&x->m, row, col); buf=x->m.atombuffer+2; while(n--){ buf->a_type = A_FLOAT; buf++->a_w.w_float = atom_getfloat(ap++) + offset; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_addscalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc; t_atom *m; t_float offset = x->f; adjustsize(&x->m, 1, argc); m = x->m.atombuffer; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++) + offset; } outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer); } static void mtx_add_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row=atom_getfloat(argv); int col=atom_getfloat(argv+1); t_atom *m; t_atom *m1 = argv+2; t_atom *m2 = x->m2.atombuffer+2; int n = argc-2; if (argc<2){ post("mtx_add: crippled matrix"); return; } if ((col<1)||(row<1)) { post("mtx_add: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } if (!(x->m2.col*x->m2.row)) { outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, argv); return; } if ((col!=x->m2.col)||(row!=x->m2.row)){ post("mtx_add: matrix dimensions do not match"); /* LATER SOLVE THIS */ return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ t_float f = atom_getfloat(m1++)+atom_getfloat(m2++); SETFLOAT(m, f); m++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_add_float(t_mtx_binmtx *x, t_float f) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap2=m2->atombuffer+2; int row2, col2, n; if (!m2->atombuffer){ post("mulitply with what ?"); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); adjustsize(m, row2, col2); ap=m->atombuffer+2; n=row2*col2; while(n--){ SETFLOAT(ap, f+atom_getfloat(ap2++)); ap++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void *mtx_add_new(t_symbol *s, int argc, t_atom *argv) { if (argc>1) post("mtx_add : extra arguments ignored"); if (argc) { t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_addscalar_class); floatinlet_new(&x->x_obj, &x->f); x->f = atom_getfloatarg(0, argc, argv); outlet_new(&x->x_obj, 0); return(x); } else { t_mtx_binmtx *x = (t_mtx_binmtx *)pd_new(mtx_add_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->m.col = x->m.row = x->m2.col = x->m2.row = 0; x->m.atombuffer = x->m2.atombuffer = 0; return(x); } } static void mtx_add_setup(void) { mtx_add_class = class_new(gensym("mtx_add"), (t_newmethod)mtx_add_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addcreator((t_newmethod)mtx_add_new, gensym("mtx_+"), A_GIMME,0); class_addmethod(mtx_add_class, (t_method)mtx_add_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_add_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_add_class, mtx_add_float); class_addbang (mtx_add_class, mtx_binmtx_bang); mtx_addscalar_class = class_new(gensym("mtx_add"), 0, (t_method)mtx_binscalar_free, sizeof(t_mtx_binscalar), 0, 0); class_addcreator(0, gensym("mtx_+"), 0, 0); class_addmethod(mtx_addscalar_class, (t_method)mtx_addscalar_matrix, gensym("matrix"), A_GIMME, 0); class_addlist (mtx_addscalar_class, mtx_addscalar_list); class_addbang (mtx_addscalar_class, mtx_binscalar_bang); class_sethelpsymbol(mtx_add_class, gensym("iemmatrix/mtx_binops")); class_sethelpsymbol(mtx_addscalar_class, gensym("iemmatrix/mtx_binops")); } /* mtx_sub */ static t_class *mtx_sub_class, *mtx_subscalar_class; static void mtx_subscalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc-2; int row=atom_getfloat(argv), col=atom_getfloat(argv+1); t_float offset=x->f; t_atom *buf; t_atom *ap=argv+2; if(argc<2){post("mtx_sub: crippled matrix");return; } adjustsize(&x->m, row, col); buf=x->m.atombuffer+2; while(n--){ buf->a_type = A_FLOAT; buf++->a_w.w_float = atom_getfloat(ap++) - offset; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_subscalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc; t_atom *m; t_float offset = x->f; adjustsize(&x->m, 1, argc); m = x->m.atombuffer; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++) - offset; } outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer); } static void mtx_sub_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row=atom_getfloat(argv); int col=atom_getfloat(argv+1); t_atom *m; t_atom *m1 = argv+2; t_atom *m2 = x->m2.atombuffer+2; int n = argc-2; if (argc<2){ post("mtx_sub: crippled matrix"); return; } if ((col<1)||(row<1)) { post("mtx_sub: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } if (!(x->m2.col*x->m2.row)) { outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, argv); return; } if ((col!=x->m2.col)||(row!=x->m2.row)){ post("mtx_sub: matrix dimensions do not match"); /* LATER SOLVE THIS */ return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ t_float f = atom_getfloat(m1++)-atom_getfloat(m2++); SETFLOAT(m, f); m++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_sub_float(t_mtx_binmtx *x, t_float f) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap2=m2->atombuffer+2; int row2, col2, n; if (!m2->atombuffer){ post("mulitply with what ?"); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); adjustsize(m, row2, col2); ap=m->atombuffer+2; n=row2*col2; while(n--){ SETFLOAT(ap, f-atom_getfloat(ap2++)); ap++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void *mtx_sub_new(t_symbol *s, int argc, t_atom *argv) { if (argc>1) post("mtx_sub : extra arguments ignored"); if (argc) { t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_subscalar_class); floatinlet_new(&x->x_obj, &x->f); x->f = atom_getfloatarg(0, argc, argv); outlet_new(&x->x_obj, 0); return(x); } else { t_mtx_binmtx *x = (t_mtx_binmtx *)pd_new(mtx_sub_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->m.col = x->m.row = x->m2.col = x->m2.row = 0; x->m.atombuffer = x->m2.atombuffer = 0; return(x); } } static void mtx_sub_setup(void) { mtx_sub_class = class_new(gensym("mtx_sub"), (t_newmethod)mtx_sub_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addcreator((t_newmethod)mtx_sub_new, gensym("mtx_-"), A_GIMME,0); class_addmethod(mtx_sub_class, (t_method)mtx_sub_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_sub_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_sub_class, mtx_sub_float); class_addbang (mtx_sub_class, mtx_binmtx_bang); mtx_subscalar_class = class_new(gensym("mtx_sub"), 0, (t_method)mtx_binscalar_free, sizeof(t_mtx_binscalar), 0, 0); class_addcreator(0, gensym("mtx_-"), 0, 0); class_addmethod(mtx_subscalar_class, (t_method)mtx_subscalar_matrix, gensym("matrix"), A_GIMME, 0); class_addlist (mtx_subscalar_class, mtx_subscalar_list); class_addbang (mtx_subscalar_class, mtx_binscalar_bang); class_sethelpsymbol(mtx_sub_class, gensym("iemmatrix/mtx_binops")); class_sethelpsymbol(mtx_subscalar_class, gensym("iemmatrix/mtx_binops")); } /* mtx_mul */ static t_class *mtx_mul_class, *mtx_mulelement_class, *mtx_mulscalar_class; static void mtx_mul_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap1=argv+2, *ap2=m2->atombuffer+2; int row=atom_getfloat(argv), col=atom_getfloat(argv+1); int row2, col2, n, r, c; if (!m2->atombuffer){ post("mulitply with what ?"); return; } if (argc<2){ post("mtx_mul: crippled matrix"); return; } if ((col<1)||(row<1)){post("mtx_mul: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); if (col!=row2) { post("mtx_mul: matrix dimensions do not match !"); return; } adjustsize(m, row, col2); ap=m->atombuffer+2; for(r=0;rx_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void mtx_mul_float(t_mtx_binmtx *x, t_float f) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap2=m2->atombuffer+2; int row2, col2, n; if (!m2->atombuffer){ post("mulitply with what ?"); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); adjustsize(m, row2, col2); ap=m->atombuffer+2; n=row2*col2; while(n--){ SETFLOAT(ap, f*atom_getfloat(ap2++)); ap++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void mtx_mulelement_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); t_atom *m; t_atom *m2 = x->m2.atombuffer+2; int n = argc-2; if (argc<2){ post("mtx_mul: crippled matrix"); return; } if ((col<1)||(row<1)) { post("mtx_mul: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } if (!(x->m2.col*x->m2.row)) { adjustsize(&x->m, row, col); matrix_set(&x->m, 0); outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); return; } if ((col!=x->m2.col)||(row!=x->m2.row)){ post("matrix dimension do not match"); /* LATER SOLVE THIS */ return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ t_float f = atom_getfloat(argv++)*atom_getfloat(m2++); SETFLOAT(m, f); m++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_mulscalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc-2; t_atom *m; t_float factor = x->f; int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); if (argc<2){ post("mtx_mul: crippled matrix"); return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_mulscalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc; t_atom *m; t_float factor = x->f; adjustsize(&x->m, 1, argc); m = x->m.atombuffer; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer); } static void *mtx_mul_new(t_symbol *s, int argc, t_atom *argv) { if (argc>1) post("mtx_mul : extra arguments ignored"); if (argc) { t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_mulscalar_class); floatinlet_new(&x->x_obj, &x->f); x->f = atom_getfloatarg(0, argc, argv); outlet_new(&x->x_obj, 0); return(x); } else { if (s->s_name[4]=='.') { /* element mul */ t_matrix *x = (t_matrix *)pd_new(mtx_mulelement_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->col = x->row = 0; x->atombuffer = 0; return(x); } else { t_mtx_binmtx *x = (t_mtx_binmtx *)pd_new(mtx_mul_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->m.col = x->m.row = x->m2.col = x->m2.row = 0; x->m.atombuffer = x->m2.atombuffer = 0; return (x); } } } static void mtx_mul_setup(void) { mtx_mul_class = class_new(gensym("mtx_mul"), (t_newmethod)mtx_mul_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addcreator((t_newmethod)mtx_mul_new, gensym("mtx_*"), A_GIMME,0); class_addmethod(mtx_mul_class, (t_method)mtx_mul_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_mul_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_mul_class, mtx_mul_float); class_addbang (mtx_mul_class, mtx_binmtx_bang); mtx_mulelement_class = class_new(gensym("mtx_.*"), (t_newmethod)mtx_mul_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addmethod(mtx_mulelement_class, (t_method)mtx_mulelement_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_mulelement_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_mulelement_class, mtx_mul_float); class_addbang (mtx_mulelement_class, mtx_binmtx_bang); mtx_mulscalar_class = class_new(gensym("mtx_mul"), 0, (t_method)mtx_binscalar_free, sizeof(t_mtx_binscalar), 0, 0); class_addcreator(0, gensym("mtx_*"), 0, 0); class_addcreator(0, gensym("mtx_.*"), 0, 0); class_addmethod(mtx_mulscalar_class, (t_method)mtx_mulscalar_matrix, gensym("matrix"), A_GIMME, 0); class_addlist (mtx_mulscalar_class, mtx_mulscalar_list); class_addbang (mtx_mulscalar_class, mtx_binscalar_bang); class_sethelpsymbol(mtx_mul_class, gensym("iemmatrix/mtx_binops")); class_sethelpsymbol(mtx_mulelement_class, gensym("iemmatrix/mtx_binops")); class_sethelpsymbol(mtx_mulscalar_class, gensym("iemmatrix/mtx_binops")); } /* mtx_div */ static t_class *mtx_divelement_class, *mtx_divscalar_class; static void mtx_divelement_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); t_atom *m; t_atom *m2 = x->m2.atombuffer+2; int n = argc-2; if (argc<2){ post("mtx_div: crippled matrix"); return; } if ((col<1)||(row<1)) { post("mtx_div: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } if (!(x->m2.col*x->m2.row)) { adjustsize(&x->m, row, col); matrix_set(&x->m, 0); outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); return; } if ((col!=x->m2.col)||(row!=x->m2.row)){ post("matrix dimension do not match"); /* LATER SOLVE THIS */ return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ t_float f = atom_getfloat(argv++)/atom_getfloat(m2++); SETFLOAT(m, f); m++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_divelement_float(t_mtx_binmtx *x, t_float f) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap2=m2->atombuffer+2; int row2, col2, n; if (!m2->atombuffer){ post("divide by what ?"); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); adjustsize(m, row2, col2); ap=m->atombuffer+2; n=row2*col2; while(n--){ SETFLOAT(ap, f/atom_getfloat(ap2++)); ap++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void mtx_divscalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc-2; t_atom *m; t_float factor = 1.0/x->f; int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); if (argc<2){ post("mtx_div: crippled matrix"); return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_divscalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc; t_atom *m; t_float factor = 1.0/x->f; adjustsize(&x->m, 1, argc); m = x->m.atombuffer; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer); } static void *mtx_div_new(t_symbol *s, int argc, t_atom *argv) { if (argc>1) post("mtx_div : extra arguments ignored"); if (argc) { /* scalar division */ t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_divscalar_class); floatinlet_new(&x->x_obj, &x->f); x->f = atom_getfloatarg(0, argc, argv); outlet_new(&x->x_obj, 0); return(x); } else { /* element division */ t_matrix *x = (t_matrix *)pd_new(mtx_divelement_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->col = x->row = 0; x->atombuffer = 0; return(x); } } static void mtx_div_setup(void) { mtx_divelement_class = class_new(gensym("mtx_./"), (t_newmethod)mtx_div_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addmethod(mtx_divelement_class, (t_method)mtx_divelement_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_divelement_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_divelement_class, mtx_divelement_float); class_addbang (mtx_divelement_class, mtx_binmtx_bang); mtx_divscalar_class = class_new(gensym("mtx_./"), 0, (t_method)mtx_binscalar_free, sizeof(t_mtx_binscalar), 0, 0); class_addmethod(mtx_divscalar_class, (t_method)mtx_divscalar_matrix, gensym("matrix"), A_GIMME, 0); class_addlist (mtx_divscalar_class, mtx_divscalar_list); class_addbang (mtx_divscalar_class, mtx_binscalar_bang); class_sethelpsymbol(mtx_divelement_class, gensym("iemmatrix/mtx_binops")); class_sethelpsymbol(mtx_divscalar_class, gensym("iemmatrix/mtx_binops")); } /* mtx_pow */ #ifdef __APPLE__ /* there is no such thing like powf on apple... */ static inline float powf (float v, float p) { return (float) pow((double)v, (double) p); } #endif /* __APPLE__ */ static t_class *mtx_powelement_class, *mtx_powscalar_class; static void mtx_powelement_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); t_atom *m; t_atom *m2 = x->m2.atombuffer+2; int n = argc-2; if (argc<2){ post("mtx_pow: crippled matrix"); return; } if ((col<1)||(row<1)) { post("mtx_pow: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } if (!(x->m2.col*x->m2.row)) { adjustsize(&x->m, row, col); matrix_set(&x->m, 0); outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); return; } if ((col!=x->m2.col)||(row!=x->m2.row)){ post("matrix dimension do not match"); /* LATER SOLVE THIS */ return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ t_float f = powf(atom_getfloat(argv++),atom_getfloat(m2++)); SETFLOAT(m, f); m++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_powelement_float(t_mtx_binmtx *x, t_float f) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap2=m2->atombuffer+2; int row2, col2, n; if (!m2->atombuffer){ post("power by what ?"); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); adjustsize(m, row2, col2); ap=m->atombuffer+2; n=row2*col2; while(n--){ SETFLOAT(ap, powf(f,atom_getfloat(ap2++))); ap++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void mtx_powscalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc-2; t_atom *m; t_float factor = x->f; int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); if (argc<2){ post("mtx_pow: crippled matrix"); return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = powf(atom_getfloat(argv++),factor); } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_powscalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc; t_atom *m; t_float factor = x->f; adjustsize(&x->m, 1, argc); m = x->m.atombuffer; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = powf(atom_getfloat(argv++),factor); } outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer); } static void *mtx_pow_new(t_symbol *s, int argc, t_atom *argv) { if (argc>1) post("mtx_pow : extra arguments ignored"); if (argc) { /* scalar powision */ t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_powscalar_class); floatinlet_new(&x->x_obj, &x->f); x->f = atom_getfloatarg(0, argc, argv); outlet_new(&x->x_obj, 0); return(x); } else { /* element powision */ t_matrix *x = (t_matrix *)pd_new(mtx_powelement_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->col = x->row = 0; x->atombuffer = 0; return(x); } } static void mtx_pow_setup(void) { mtx_powelement_class = class_new(gensym("mtx_.^"), (t_newmethod)mtx_pow_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addmethod(mtx_powelement_class, (t_method)mtx_powelement_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_powelement_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_powelement_class, mtx_powelement_float); class_addbang (mtx_powelement_class, mtx_binmtx_bang); mtx_powscalar_class = class_new(gensym("mtx_.^"), 0, (t_method)mtx_binscalar_free, sizeof(t_mtx_binscalar), 0, 0); class_addmethod(mtx_powscalar_class, (t_method)mtx_powscalar_matrix, gensym("matrix"), A_GIMME, 0); class_addlist (mtx_powscalar_class, mtx_powscalar_list); class_addbang (mtx_powscalar_class, mtx_binscalar_bang); class_sethelpsymbol(mtx_powelement_class, gensym("iemmatrix/mtx_binops")); class_sethelpsymbol(mtx_powscalar_class, gensym("iemmatrix/mtx_binops")); } void mtx_binops_setup(void) { mtx_add_setup(); mtx_sub_setup(); mtx_mul_setup(); mtx_div_setup(); mtx_pow_setup(); } void iemtx_binops_setup(void) { mtx_binops_setup(); }