/* * iemmatrix * * objects for manipulating simple matrices * mostly refering to matlab/octave matrix functions * * Copyright (c) IOhannes m zm�lnig, forum::f�r::uml�ute * IEM, Graz, Austria * * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. * */ #include "iemmatrix.h" /* mtx_inverse */ static t_class *mtx_inverse_class; t_matrixfloat* mtx_doInvert(t_matrixfloat*input, int rowcol){ /* * row==col==rowclo * input=t_matrixfloat[row*col] * output=t_matrixfloat[row*col] */ int i, k; t_matrixfloat *a1, *b1, *a2, *b2; int ok=0; /* error counter */ int col=rowcol, row=rowcol, row2=row*col; t_matrixfloat *original=input; // 1a reserve space for the inverted matrix t_matrixfloat *inverted = (t_matrixfloat *)getbytes(sizeof(t_matrixfloat)*row2); // 1b make an eye-shaped float-buf for B i=row2; b1=inverted; while(i--)*b1++=0; i=row; b1=inverted; while(i--)b1[i*(row+1)]=1; // 2. do the Gauss-Jordan for (k=0;k<row;k++) { // 2. adjust current row t_matrixfloat diagel = original[k*(col+1)]; t_matrixfloat i_diagel = diagel?1./diagel:0; if (!diagel)ok++; /* normalize current row (set the diagonal-element to 1 */ a2=original+k*col; b2=inverted+k*col; i=row; while(i--){ *a2++*=i_diagel; *b2++*=i_diagel; } /* eliminate the k-th element in each row by adding the weighted normalized row */ a2=original+k*row; b2=inverted+k*row; for(i=0;i<row;i++) if (i-k) { t_matrixfloat f=-*(original+i*row+k); int j = row; a1=original+i*row; b1=inverted+i*row; while (j--) { *(a1+j)+=f**(a2+j); *(b1+j)+=f**(b2+j); } } } if (ok)post("mtx_inverse: couldn't really invert the matrix !!! %d error%c", ok, (ok-1)?'s':0); return inverted; } static void mtx_inverse_matrix(t_matrix *x, t_symbol *s, int argc, t_atom *argv) { /* maybe we should do this in double or long double ? */ int row=atom_getfloat(argv); int col=atom_getfloat(argv+1); t_matrixfloat *original, *inverted; if(row*col+2>argc){ post("mtx_print : sparse matrices not yet supported : use \"mtx_check\""); return; } // 1 extract values of A to float-buf original=matrix2float(argv); // reserve memory for outputting afterwards adjustsize(x, col, row); if (row!=col){ // we'll have to do the pseudo-inverse: // P=A'*inv(A*A'); t_matrixfloat*transposed=mtx_doTranspose(original, row, col); t_matrixfloat*invertee =mtx_doMultiply(row, original, col, transposed, row); inverted=mtx_doMultiply(col, transposed, row, mtx_doInvert(invertee, row), row); freebytes(transposed, sizeof(t_matrixfloat)*col*row); freebytes(invertee , sizeof(t_matrixfloat)*row*row); } else { inverted=mtx_doInvert(original, row); } // 3. output the matrix // 3a convert the floatbuf to an atombuf; float2matrix(x->atombuffer, inverted); // 3b destroy the buffers freebytes(original, sizeof(t_matrixfloat)*row*col); freebytes(inverted, sizeof(t_matrixfloat)*row*row); // 3c output the atombuf; matrix_bang(x); } static void *mtx_inverse_new(t_symbol *s, int argc, t_atom *argv) { t_matrix *x = (t_matrix *)pd_new(mtx_inverse_class); outlet_new(&x->x_obj, 0); x->col=x->row=0; x->atombuffer=0; return (x); } void mtx_inverse_setup(void) { mtx_inverse_class = class_new(gensym("mtx_inverse"), (t_newmethod)mtx_inverse_new, (t_method)matrix_free, sizeof(t_matrix), 0, A_GIMME, 0); class_addbang (mtx_inverse_class, matrix_bang); class_addmethod(mtx_inverse_class, (t_method)mtx_inverse_matrix, gensym("matrix"), A_GIMME, 0); class_sethelpsymbol(mtx_inverse_class, gensym("iemmatrix/mtx_inverse")); } void iemtx_inverse_setup(void){ mtx_inverse_setup(); }