/* * iemmatrix * * objects for manipulating simple matrices * mostly refering to matlab/octave matrix functions * * Copyright (c) IOhannes m zmölnig, forum::für::umläute * IEM, Graz, Austria * * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. * */ #include "iemmatrix.h" /* mtx_inverse */ static t_class *mtx_inverse_class; t_matrixfloat* mtx_doInvert(t_matrixfloat*input, int rowcol, int*error){ /* * row==col==rowclo * input=t_matrixfloat[row*col] * output=t_matrixfloat[row*col] */ int i, k; t_matrixfloat *a1, *b1, *a2, *b2; int ok=0; /* error counter */ int col=rowcol, row=rowcol, row2=row*col; t_matrixfloat *original=input; t_matrixfloat *inverted = 0; if(input==0)return 0; /* 1a reserve space for the inverted matrix */ inverted=(t_matrixfloat *)getbytes(sizeof(t_matrixfloat)*row2); if(inverted==0)return 0; /* 1b make an eye-shaped float-buf for B */ i=row2; b1=inverted; while(i--)*b1++=0; i=row; b1=inverted; while(i--)b1[i*(row+1)]=1; /* 2. do the Gauss-Jordan */ for (k=0;kargc){ post("mtx_print : sparse matrices not yet supported : use \"mtx_check\""); return; } /* reserve memory for outputting afterwards */ adjustsize(x, col, row); /* 1. extract values of A to float-buf */ original=matrix2float(argv); if (row==col){ /* fine, the matrix is square */ inverted=mtx_doInvert(original, row, &error); } else { /* we'll have to do the pseudo-inverse: * P=A'*inv(A*A') if rowcol){ inverteeCol=col; invertee =mtx_doMultiply(col, transposed, row, original, col); inverted =mtx_doMultiply(col, mtx_doInvert(invertee, col, &error), col, transposed, row); } else { inverteeCol=row; invertee =mtx_doMultiply(row, original, col, transposed, row); inverted =mtx_doMultiply(col, transposed, row, mtx_doInvert(invertee, row, &error), row); } freebytes(transposed, sizeof(t_matrixfloat)*col*row); freebytes(invertee , sizeof(t_matrixfloat)*inverteeCol*inverteeCol); } /* 3. output the matrix */ /* 3a convert the floatbuf to an atombuf; */ float2matrix(x->atombuffer, inverted); /* 3b destroy the buffers */ freebytes(original, sizeof(t_matrixfloat)*row*col); if(error){ outlet_bang(x->x_outlet); pd_error(x, "mtx_inverse: couldn't really invert the matrix !!! %d error%c", error, (error-1)?'s':0); } /* 3c output the atombuf; */ matrix_bang(x); } static void *mtx_inverse_new(t_symbol *s, int argc, t_atom *argv) { t_matrix *x = (t_matrix *)pd_new(mtx_inverse_class); outlet_new(&x->x_obj, 0); x->col=x->row=0; x->atombuffer=0; x->x_outlet=outlet_new(&x->x_obj, 0); return (x); } void mtx_inverse_setup(void) { mtx_inverse_class = class_new(gensym("mtx_inverse"), (t_newmethod)mtx_inverse_new, (t_method)matrix_free, sizeof(t_matrix), 0, A_GIMME, 0); class_addbang (mtx_inverse_class, matrix_bang); class_addmethod(mtx_inverse_class, (t_method)mtx_inverse_matrix, gensym("matrix"), A_GIMME, 0); } void iemtx_inverse_setup(void){ mtx_inverse_setup(); }