/* * iemmatrix * * objects for manipulating simple matrices * mostly refering to matlab/octave matrix functions * * Copyright (c) IOhannes m zmölnig, forum::für::umläute * IEM, Graz, Austria * * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. * */ #include "iemmatrix.h" /* mtx_mul mtx_* mtx_.* mtx_./ matrix multiplication */ /* mtx_mul */ static t_class *mtx_mul_class, *mtx_mulelement_class, *mtx_mulscalar_class; static void mtx_mul_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap1=argv+2, *ap2=m2->atombuffer+2; int row=atom_getfloat(argv), col=atom_getfloat(argv+1); int row2, col2, n, r, c; if (!m2->atombuffer){ post("mulitply with what ?"); return; } if (argc<2){ post("mtx_mul: crippled matrix"); return; } if ((col<1)||(row<1)){post("mtx_mul: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); if (col!=row2) { post("mtx_mul: matrix dimensions do not match !"); return; } adjustsize(m, row, col2); ap=m->atombuffer+2; for(r=0;rx_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void mtx_mul_float(t_mtx_binmtx *x, t_float f) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap2=m2->atombuffer+2; int row2, col2, n; if (!m2->atombuffer){ post("mulitply with what ?"); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); adjustsize(m, row2, col2); ap=m->atombuffer+2; n=row2*col2; while(n--){ SETFLOAT(ap, f*atom_getfloat(ap2++)); ap++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void mtx_mulelement_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); t_atom *m; t_atom *m2 = x->m2.atombuffer+2; int n = argc-2; if (argc<2){ post("mtx_mul: crippled matrix"); return; } if ((col<1)||(row<1)) { post("mtx_mul: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } if (!(x->m2.col*x->m2.row)) { adjustsize(&x->m, row, col); matrix_set(&x->m, 0); outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); return; } if ((col!=x->m2.col)||(row!=x->m2.row)){ post("matrix dimension do not match"); /* LATER SOLVE THIS */ return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ t_float f = atom_getfloat(argv++)*atom_getfloat(m2++); SETFLOAT(m, f); m++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_mulscalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc-2; t_atom *m; t_float factor = x->f; int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); if (argc<2){ post("mtx_mul: crippled matrix"); return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_mulscalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc; t_atom *m; t_float factor = x->f; adjustsize(&x->m, 1, argc); m = x->m.atombuffer; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer); } static void *mtx_mul_new(t_symbol *s, int argc, t_atom *argv) { if (argc>1) post("mtx_mul : extra arguments ignored"); if (argc) { t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_mulscalar_class); floatinlet_new(&x->x_obj, &x->f); x->f = atom_getfloatarg(0, argc, argv); outlet_new(&x->x_obj, 0); return(x); } else { if (s->s_name[4]=='.') { /* element mul */ t_matrix *x = (t_matrix *)pd_new(mtx_mulelement_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->col = x->row = 0; x->atombuffer = 0; return(x); } else { t_mtx_binmtx *x = (t_mtx_binmtx *)pd_new(mtx_mul_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->m.col = x->m.row = x->m2.col = x->m2.row = 0; x->m.atombuffer = x->m2.atombuffer = 0; return (x); } } } void mtx_mul_setup(void) { mtx_mul_class = class_new(gensym("mtx_mul"), (t_newmethod)mtx_mul_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addcreator((t_newmethod)mtx_mul_new, gensym("mtx_*"), A_GIMME,0); class_addmethod(mtx_mul_class, (t_method)mtx_mul_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_mul_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_mul_class, mtx_mul_float); class_addbang (mtx_mul_class, mtx_binmtx_bang); mtx_mulelement_class = class_new(gensym("mtx_.*"), (t_newmethod)mtx_mul_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addmethod(mtx_mulelement_class, (t_method)mtx_mulelement_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_mulelement_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_mulelement_class, mtx_mul_float); class_addbang (mtx_mulelement_class, mtx_binmtx_bang); class_sethelpsymbol(mtx_mulelement_class, gensym("mtx_mul-help")); mtx_mulscalar_class = class_new(gensym("mtx_mul"), 0, (t_method)mtx_binscalar_free, sizeof(t_mtx_binscalar), 0, 0); class_addcreator(0, gensym("mtx_*"), 0, 0); class_addcreator(0, gensym("mtx_.*"), 0, 0); class_addmethod(mtx_mulscalar_class, (t_method)mtx_mulscalar_matrix, gensym("matrix"), A_GIMME, 0); class_addlist (mtx_mulscalar_class, mtx_mulscalar_list); class_addbang (mtx_mulscalar_class, mtx_binscalar_bang); } /* mtx_div */ static t_class *mtx_divelement_class, *mtx_divscalar_class; static void mtx_divelement_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv) { int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); t_atom *m; t_atom *m2 = x->m2.atombuffer+2; int n = argc-2; if (argc<2){ post("mtx_div: crippled matrix"); return; } if ((col<1)||(row<1)) { post("mtx_div: invalid dimensions"); return; } if (col*row>argc-2){ post("sparse matrix not yet supported : use \"mtx_check\""); return; } if (!(x->m2.col*x->m2.row)) { adjustsize(&x->m, row, col); matrix_set(&x->m, 0); outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); return; } if ((col!=x->m2.col)||(row!=x->m2.row)){ post("matrix dimension do not match"); /* LATER SOLVE THIS */ return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ t_float f = atom_getfloat(argv++)/atom_getfloat(m2++); SETFLOAT(m, f); m++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_divelement_float(t_mtx_binmtx *x, t_float f) { t_matrix *m=&x->m, *m2=&x->m2; t_atom *ap, *ap2=m2->atombuffer+2; int row2, col2, n; if (!m2->atombuffer){ post("divide by what ?"); return; } row2=atom_getfloat(m2->atombuffer); col2=atom_getfloat(m2->atombuffer+1); adjustsize(m, row2, col2); ap=m->atombuffer+2; n=row2*col2; while(n--){ SETFLOAT(ap, f/atom_getfloat(ap2++)); ap++; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer); } static void mtx_divscalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc-2; t_atom *m; t_float factor = 1.0/x->f; int row=atom_getfloat(argv++); int col=atom_getfloat(argv++); if (argc<2){ post("mtx_div: crippled matrix"); return; } adjustsize(&x->m, row, col); m = x->m.atombuffer+2; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer); } static void mtx_divscalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv) { int n=argc; t_atom *m; t_float factor = 1.0/x->f; adjustsize(&x->m, 1, argc); m = x->m.atombuffer; while(n--){ m->a_type = A_FLOAT; (m++)->a_w.w_float = atom_getfloat(argv++)*factor; } outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer); } static void *mtx_div_new(t_symbol *s, int argc, t_atom *argv) { if (argc>1) post("mtx_div : extra arguments ignored"); if (argc) { /* scalar division */ t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_divscalar_class); floatinlet_new(&x->x_obj, &x->f); x->f = atom_getfloatarg(0, argc, argv); outlet_new(&x->x_obj, 0); return(x); } else { /* element division */ t_matrix *x = (t_matrix *)pd_new(mtx_divelement_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym("")); outlet_new(&x->x_obj, 0); x->col = x->row = 0; x->atombuffer = 0; return(x); } } void mtx_div_setup(void) { mtx_divelement_class = class_new(gensym("mtx_./"), (t_newmethod)mtx_div_new, (t_method)mtx_binmtx_free, sizeof(t_mtx_binmtx), 0, A_GIMME, 0); class_addmethod(mtx_divelement_class, (t_method)mtx_divelement_matrix, gensym("matrix"), A_GIMME, 0); class_addmethod(mtx_divelement_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0); class_addfloat (mtx_divelement_class, mtx_divelement_float); class_addbang (mtx_divelement_class, mtx_binmtx_bang); mtx_divscalar_class = class_new(gensym("mtx_./"), 0, (t_method)mtx_binscalar_free, sizeof(t_mtx_binscalar), 0, 0); class_addmethod(mtx_divscalar_class, (t_method)mtx_divscalar_matrix, gensym("matrix"), A_GIMME, 0); class_addlist (mtx_divscalar_class, mtx_divscalar_list); class_addbang (mtx_divscalar_class, mtx_binscalar_bang); class_sethelpsymbol(mtx_divelement_class, gensym("mtx_mul-help")); class_sethelpsymbol(mtx_divscalar_class, gensym("mtx_mul-help")); } void iemtx_mul_setup(void) { mtx_mul_setup(); mtx_div_setup(); }