aboutsummaryrefslogtreecommitdiff
path: root/doc/mtx_spherical_harmonics-help.pd
blob: 597ef7bb0d5e978bd8576ef638c19ef5533a4cfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#N canvas 61 39 921 503 10;
#X msg 96 97 matrix 2 1 0 0;
#X obj 206 132 mtx_rand;
#X msg 209 110 2 10;
#X obj 96 197 mtx_print;
#X text 537 377 Franz Zotter \, 2009;
#X text 150 226 for -n<=m<=n:;
#X text 188 258 Y_n^m(phi \, theta) = N_n^m * sin(m*phi) * P_n^m(cos(theta))
;
#X text 188 242 Y_n^m(phi \, theta) = N_n^m * cos(m*phi) * P_n^m(cos(theta))
;
#X text 641 241 for m>=0;
#X text 640 257 for m< 0;
#X text 147 291 The order of the harmonics in the output columns is
specified by the linear index k=n^2+n+m+1.;
#X text 95 54 [mtx_spherical_harmonics] spherical harmonics evaluated
at a set of points given in phi and theta coordinates.;
#X text 146 328 [mtx_spherical_harmonics] uses fully normalized Y_n^m
with Condon-Shortley phase;
#X text 305 160 for an L points 2xL input matrix \, [mtx_spherical_harmonics]
evaluates the (nmax+2)^2 spherical harmonics at L points and delivers
an Lx(nmax+2)^2 output matrix.;
#X text 309 118 [mtx_spherical_harmonics] requires a numerical creation
argument <nmax> specifyiing the maximum order 0<=n<=nmax.;
#X obj 96 157 mtx_spherical_harmonics 2;
#X connect 0 0 15 0;
#X connect 1 0 15 0;
#X connect 2 0 1 0;
#X connect 15 0 3 0;