1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/*
* iemmatrix
*
* objects for manipulating simple matrices
* mostly refering to matlab/octave matrix functions
*
* Copyright (c) IOhannes m zmölnig, forum::für::umläute
* IEM, Graz, Austria
*
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
*
*/
#include "iemmatrix.h"
/*
mtx_bspline:
this is only in the iemmatrix library since i have to make sure that there is an x-value
for each y-value; this however enforces that for each point we have to define a point
in all dimensions;
think: should we split this into 2 objects?
- one for calculating the coefficients of the polynomial function for the bspline
- another for calculating the value of a piecewise polyfuns
*/
static t_class *mtx_bspline_class;
typedef struct _mtx_spline
{
t_object x_obj;
t_outlet *x_outlet;
int x_numpoints;
int x_dimension;
t_matrixfloat x_min, x_max;
t_matrixfloat*x_x;
t_matrixfloat**x_y, **x_u, **x_p;
t_atom*x_result;
} t_mtx_spline;
static void mtx_bspline_resize(t_mtx_spline *x, int cols, int dim){
int size=x->x_numpoints*sizeof(t_matrixfloat);
int i=0;
if(x->x_x)freebytes(x->x_x, size); x->x_x=0;
for(i=0; i<x->x_dimension; i++){
if(x->x_y&&x->x_y[i])freebytes(x->x_y[i], size); x->x_y[i]=0;
if(x->x_u&&x->x_u[i])freebytes(x->x_u[i], size); x->x_u[i]=0;
if(x->x_p&&x->x_p[i])freebytes(x->x_p[i], size); x->x_p[i]=0;
}
if(x->x_y)freebytes(x->x_y, x->x_dimension*sizeof(t_matrixfloat*)); x->x_y=0;
if(x->x_u)freebytes(x->x_u, x->x_dimension*sizeof(t_matrixfloat*)); x->x_u=0;
if(x->x_p)freebytes(x->x_p, x->x_dimension*sizeof(t_matrixfloat*)); x->x_p=0;
if(x->x_result)freebytes(x->x_result, x->x_dimension*sizeof(t_atom)); x->x_p=0;
if(dim<1)dim=1;
if(cols<0)cols=0;
x->x_numpoints = cols;
x->x_dimension = dim;
if(cols>0){
size=x->x_numpoints*sizeof(t_matrixfloat);
x->x_x = (t_matrixfloat*)getbytes(size);
x->x_result = (t_atom*)getbytes(x->x_dimension*sizeof(t_atom));
x->x_y = (t_matrixfloat**)getbytes(dim*sizeof(t_matrixfloat*));
x->x_u = (t_matrixfloat**)getbytes(dim*sizeof(t_matrixfloat*));
x->x_p = (t_matrixfloat**)getbytes(dim*sizeof(t_matrixfloat*));
for(i=0; i<x->x_dimension; i++){
x->x_y[i] = (t_matrixfloat*)getbytes(size);
x->x_u[i] = (t_matrixfloat*)getbytes(size);
x->x_p[i] = (t_matrixfloat*)getbytes(size);
}
}
}
static void mtx_bspline_matrix2(t_mtx_spline *X, t_symbol *s, int argc, t_atom *argv)
{
int row=0;
int col=0;
t_matrixfloat *x, **y, **u, **p, *w, *d, *fp;
t_matrixfloat*dummy;
int i,j;
int N;
if (argc<2){ error("mtx_bspline: crippled matrix"); return; }
row=atom_getfloat(argv);
col=atom_getfloat(argv+1);
if ((col<2)||(row<3)) { error("mtx_bspline: invalid dimensions"); return; }
if (col*row>argc-2){ error("sparse matrix not yet supported : use \"mtx_check\""); return; }
col--;
mtx_bspline_resize(X, row, col);
/* 1st fill the matrix into the arrays */
fp=matrix2float(argv);
dummy=fp;
x=X->x_x;
y=X->x_y;
u=X->x_u;
p=X->x_p;
for(i=0; i<row; i++){
x[i]=*dummy++;
for(j=0; j<col; j++){
y[j][i]=*dummy++;
}
}
X->x_min=x[0];
X->x_max=x[row-1];
w=(t_matrixfloat*)getbytes(X->x_numpoints*sizeof(t_matrixfloat));
d=(t_matrixfloat*)getbytes(X->x_numpoints*sizeof(t_matrixfloat));
N=row-1;
for(j=0; j<col;j++){
d[0]=0.0; d[1]=0.0;
for(i=1; i<N; i++)
d[i] = 2*(x[i+1]-x[i-1]);
for(i=0; i<N; i++)
u[j][i] = x[i+1]-x[i];
for(i=1; i<N; i++)
w[i]=6.0*((y[j][i+1]-y[j][i])/u[j][i]
-(y[j][i]-y[j][i-1])/u[j][i-1]);
/* now solve this tridiagonal matrix */
for(i=1; i<N-1; i++)
{
w[i+1] -= w[i]*u[j][i]/d[i];
d[i+1] -= u[j][i]*u[j][i]/d[i];
}
for(i=0; i<N; i++)p[j][i]=0.0;
for(i=N-1; i>0; i--)
p[j][i] = (w[i]-u[j][i]*p[j][i+1])/d[i];
}
}
static void mtx_bspline_list(t_mtx_spline *x, t_symbol *s, int argc, t_atom *argv)
{
/* this should output a matrix, one row for each element of this list */
}
static void mtx_bspline_float(t_mtx_spline *X, t_float f)
{
int i=0, j=0;
int dim=X->x_dimension;
t_matrixfloat *x=X->x_x, **y=X->x_y, **u=X->x_u, **p=X->x_p;
t_atom*result=X->x_result;
if(dim<1){
outlet_float(X->x_outlet, 0.f);
return;
}
if(f<X->x_min)f=X->x_min;
if(f>X->x_max)f=X->x_max;
while(f>x[i+1])i++;
for(j=0; j<dim; j++){
t_matrixfloat uji=u[j][i];
t_matrixfloat t=(f-x[i])/uji;
t_matrixfloat t3=t*t*t-t;
t_matrixfloat t3i=(1-t)*(1-t)*(1-t)-(1-t);
t_float ret=(t_float)(t*y[j][i+1]+(1-t)*y[j][i]+uji*uji*(p[j][i+1]*t3+p[j][i]*t3i)/6.0);
SETFLOAT(result+j, ret);
}
outlet_list(X->x_outlet, 0, dim, result);
}
static void mtx_bspline_free(t_mtx_spline *x)
{
mtx_bspline_resize(x, 0, 0);
}
static void *mtx_bspline_new(void)
{
t_mtx_spline *x = (t_mtx_spline *)pd_new(mtx_bspline_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym(""));
x->x_numpoints=0;
x->x_dimension=0;
x->x_min=0.0;
x->x_max=0.0;
x->x_x=0;
x->x_y=x->x_u=x->x_p=0;
x->x_result=0;
x->x_outlet=outlet_new(&x->x_obj, 0);
return(x);
}
void mtx_bspline_setup(void)
{
mtx_bspline_class = class_new(gensym("mtx_bspline"), (t_newmethod)mtx_bspline_new, (t_method)mtx_bspline_free,
sizeof(t_mtx_spline), 0, A_NULL);
/* class_addmethod(mtx_bspline_class, (t_method)mtx_bspline_matrix, gensym("list"), A_GIMME, 0); */
class_addmethod(mtx_bspline_class, (t_method)mtx_bspline_matrix2, gensym(""), A_GIMME, 0);
class_addfloat (mtx_bspline_class, mtx_bspline_float);
}
void iemtx_bspline_setup(void)
{
mtx_bspline_setup();
}
|