1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
/*
* iemmatrix
*
* objects for manipulating simple matrices
* mostly refering to matlab/octave matrix functions
*
* Copyright (c) IOhannes m zmölnig, forum::für::umläute
* IEM, Graz, Austria
*
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
*
*/
#include "iemmatrix.h"
/* mtx_inverse */
static t_class *mtx_inverse_class;
static void mtx_inverse_matrix(t_matrix *x, t_symbol *s, int argc, t_atom *argv)
{
/* maybe we should do this in double or long double ? */
int row=atom_getfloat(argv);
int col=atom_getfloat(argv+1);
int err=0;
t_matrixfloat *original, *inverted;
if(row*col+2>argc){
post("mtx_print : sparse matrices not yet supported : use \"mtx_check\"");
return;
}
/* reserve memory for outputting afterwards */
adjustsize(x, col, row);
/* 1. extract values of A to float-buf */
original=matrix2float(argv);
if (row==col){
/* fine, the matrix is square */
inverted=mtx_doInvert(original, row, &err);
} else {
/* we'll have to do the pseudo-inverse:
* P=A'*inv(A*A') if row<col
* P=inv(A'*A)*A' if col<row
*/
t_matrixfloat*transposed, *invertee;
int inverteeCol=0;
transposed=mtx_doTranspose(original, row, col);
if(row>col){
inverteeCol=col;
invertee =mtx_doMultiply(col, transposed, row, original, col);
inverted =mtx_doMultiply(col, mtx_doInvert(invertee, col, &err), col, transposed, row);
} else {
inverteeCol=row;
invertee =mtx_doMultiply(row, original, col, transposed, row);
inverted =mtx_doMultiply(col, transposed, row, mtx_doInvert(invertee, row, &err), row);
}
freebytes(transposed, sizeof(t_matrixfloat)*col*row);
freebytes(invertee , sizeof(t_matrixfloat)*inverteeCol*inverteeCol);
}
/* 3. output the matrix */
/* 3a convert the floatbuf to an atombuf; */
float2matrix(x->atombuffer, inverted);
/* 3b destroy the buffers */
freebytes(original, sizeof(t_matrixfloat)*row*col);
if(err){
outlet_bang(x->x_outlet);
pd_error(x, "mtx_inverse: couldn't really invert the matrix !!! %d error%c", err, (err-1)?'s':0);
}
/* 3c output the atombuf; */
matrix_bang(x);
}
static void *mtx_inverse_new(t_symbol *s, int argc, t_atom *argv)
{
t_matrix *x = (t_matrix *)pd_new(mtx_inverse_class);
outlet_new(&x->x_obj, 0);
x->col=x->row=0;
x->atombuffer=0;
x->x_outlet=outlet_new(&x->x_obj, 0);
return (x);
}
void mtx_inverse_setup(void)
{
mtx_inverse_class = class_new(gensym("mtx_inverse"), (t_newmethod)mtx_inverse_new,
(t_method)matrix_free, sizeof(t_matrix), 0, A_GIMME, 0);
class_addbang (mtx_inverse_class, matrix_bang);
class_addmethod(mtx_inverse_class, (t_method)mtx_inverse_matrix, gensym("matrix"), A_GIMME, 0);
}
void iemtx_inverse_setup(void){
mtx_inverse_setup();
}
|