aboutsummaryrefslogtreecommitdiff
path: root/src/mtx_max2.c
blob: de25479dce1bdb3f138998042327565128b9e442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 *  iemmatrix
 *
 *  objects for manipulating simple matrices
 *  mostly refering to matlab/octave matrix functions
 *
 * Copyright (c) IOhannes m zmölnig, forum::für::umläute
 * IEM, Graz, Austria
 *
 * For information on usage and redistribution, and for a DISCLAIMER OF ALL
 * WARRANTIES, see the file, "LICENSE.txt," in this distribution.
 *
 */
#include "iemmatrix.h"

/*
  mtx_max2
*/

/* mtx_max2 */
static t_class *mtx_max2_class, *mtx_max2scalar_class;

static void mtx_max2scalar_matrix(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv)
{
  int n=argc-2;
  int row=atom_getfloat(argv), col=atom_getfloat(argv+1);
  
  t_float offset=x->f;
  t_atom *buf;
  t_atom *ap=argv+2;

  if(argc<2){post("mtx_max2: crippled matrix");return; }
  adjustsize(&x->m, row, col);

  buf=x->m.atombuffer+2;

  while(n--){
    buf->a_type = A_FLOAT;
    buf++->a_w.w_float = atom_getfloat(ap++) + offset;
  }
  outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer);
}
static void mtx_max2scalar_list(t_mtx_binscalar *x, t_symbol *s, int argc, t_atom *argv)
{
  int n=argc;
  t_atom *m;
  t_float offset = x->f;
  adjustsize(&x->m, 1, argc);
  m = x->m.atombuffer;

  while(n--){
    m->a_type = A_FLOAT;
    (m++)->a_w.w_float = atom_getfloat(argv++) + offset;
  }
  outlet_list(x->x_obj.ob_outlet, gensym("list"), argc, x->m.atombuffer);
}

static void mtx_max2_matrix(t_mtx_binmtx *x, t_symbol *s, int argc, t_atom *argv)
{
  int row=atom_getfloat(argv);
  int col=atom_getfloat(argv+1);
  t_atom *m;
  t_atom *m1 = argv+2;
  t_atom *m2 = x->m2.atombuffer+2;
  int n = argc-2;

  if (argc<2){    post("mtx_max2: crippled matrix");    return;  }
  if ((col<1)||(row<1)) {    post("mtx_max2: invalid dimensions");    return;  }
  if (col*row>argc-2){    post("sparse matrix not yet supported : use \"mtx_check\"");    return;  }

  if (!(x->m2.col*x->m2.row)) {
    outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, argv);
    return;
  }

  if ((col!=x->m2.col)||(row!=x->m2.row)){ 
    post("mtx_max2: matrix dimensions do not match");
    /* LATER SOLVE THIS */    
    return;
  }
  adjustsize(&x->m, row, col);
  m = x->m.atombuffer+2;

  while(n--){
    t_float f1=atom_getfloat(m1++);
    t_float f2=atom_getfloat(m2++);
    t_float f = (f1>f2)?f1:f2;
    SETFLOAT(m, f);
    m++;
  }
  
  outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), argc, x->m.atombuffer);
}
static void mtx_max2_float(t_mtx_binmtx *x, t_float f)
{
  t_matrix *m=&x->m, *m2=&x->m2;
  t_atom *ap, *ap2=m2->atombuffer+2;
  int row2, col2, n;

  if (!m2->atombuffer){ post("mulitply with what ?");            return; }

  row2=atom_getfloat(m2->atombuffer);
  col2=atom_getfloat(m2->atombuffer+1);
  adjustsize(m, row2, col2);
  ap=m->atombuffer+2;

  n=row2*col2;

  while(n--){
    SETFLOAT(ap, f+atom_getfloat(ap2++));
    ap++;
  }
  
  outlet_anything(x->x_obj.ob_outlet, gensym("matrix"), m->row*m->col+2, m->atombuffer);
}
static void *mtx_max2_new(t_symbol *s, int argc, t_atom *argv)
{
  if (argc>1) post("mtx_max2 : extra arguments ignored");
  if (argc) {
    t_mtx_binscalar *x = (t_mtx_binscalar *)pd_new(mtx_max2scalar_class);
    floatinlet_new(&x->x_obj, &x->f);
    x->f = atom_getfloatarg(0, argc, argv);
    outlet_new(&x->x_obj, 0);
    return(x);
  } else {
    t_mtx_binmtx *x = (t_mtx_binmtx *)pd_new(mtx_max2_class);
    inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"), gensym(""));
    outlet_new(&x->x_obj, 0);
    x->m.col = x->m.row =  x->m2.col = x->m2.row = 0;
    x->m.atombuffer = x->m2.atombuffer = 0;
    return(x);
  }
}

void mtx_max2_setup(void)
{
  mtx_max2_class = class_new(gensym("mtx_max2"), (t_newmethod)mtx_max2_new, (t_method)mtx_binmtx_free,
                            sizeof(t_mtx_binmtx), 0, A_GIMME, 0);
  class_addmethod(mtx_max2_class, (t_method)mtx_max2_matrix, gensym("matrix"), A_GIMME, 0);
  class_addmethod(mtx_max2_class, (t_method)mtx_bin_matrix2, gensym(""), A_GIMME, 0);
  class_addfloat (mtx_max2_class, mtx_max2_float);
  class_addbang  (mtx_max2_class, mtx_binmtx_bang);

  mtx_max2scalar_class = class_new(gensym("mtx_max2"), 0, (t_method)mtx_binscalar_free,
                                  sizeof(t_mtx_binscalar), 0, 0);
  class_addmethod(mtx_max2scalar_class, (t_method)mtx_max2scalar_matrix, gensym("matrix"), A_GIMME, 0);
  class_addlist  (mtx_max2scalar_class, mtx_max2scalar_list);
  class_addbang  (mtx_max2scalar_class, mtx_binscalar_bang);

  class_sethelpsymbol(mtx_max2_class, gensym("iemmatrix/mtx_binops"));
  class_sethelpsymbol(mtx_max2scalar_class, gensym("iemmatrix/mtx_binops"));
}

void iemtx_max2_setup(void)
{
  mtx_max2_setup();
}