1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/*
* iemmatrix
*
* objects for manipulating simple matrices
* mostly refering to matlab/octave matrix functions
*
* Copyright (c) 2005, Franz Zotter
* IEM, Graz, Austria
*
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
*
*/
#include "iemmatrix.h"
#include <stdlib.h>
#ifdef USE_FFTW
#include <fftw3.h>
#endif
static t_class *mtx_rifft_class;
#ifdef USE_FFTW
enum ComplexPart { REALPART=0, IMAGPART=1};
#endif
typedef struct _MTXRifft_
{
t_object x_obj;
int rows;
int columns;
int columns_re;
int size;
int size2;
t_float renorm_fac;
#ifdef USE_FFTW
fftw_plan *fftplan;
fftw_complex *f_in;
double *f_out;
#else
t_float *f_re;
t_float *f_im;
#endif
t_outlet *list_re_out;
t_outlet *list_im_out;
t_atom *list_re;
t_atom *list_im;
} MTXRifft;
/* helper functions: these should really go into a separate file! */
static void zeroFloatArray (int n, t_float *f)
{
while (n--)
*f++ = 0.0f;
}
static void writeFloatIntoList (int n, t_atom *l, t_float *f)
{
for (;n--;f++, l++)
SETFLOAT (l, *f);
}
static void readFloatFromList (int n, t_atom *l, t_float *f)
{
while (n--)
*f++ = atom_getfloat (l++);
}
/*--------------inverse real fft */
static void multiplyVector (int n, t_float *f, t_float fac)
{
while (n--)
*f++ *= fac;
}
static void ifftPrepareReal (int n, t_float *re, t_float *im)
{
n >>= 1;
re += n;
im += n;
while (--n)
*++re = -*--im;
}
#ifdef USE_FFTW
static void readFFTWComplexPartFromList (int n, t_atom *l, fftw_complex *f, enum ComplexPart p)
{
for (;n--;)
f[n][p] = (double) atom_getfloat (l+n);
}
static void writeDoubleIntoList (int n, t_atom *l, double *d)
{
t_float f;
while (n--) {
f=(t_float) d[n];
SETFLOAT (l+n,f);
}
}
static void multiplyDoubleVector (int n, double *f, t_float fac)
{
double fd=(double)fac;
while (n--)
*f++ *= (double)fd;
}
#endif
static void *newMTXRifft (t_symbol *s, int argc, t_atom *argv)
{
MTXRifft *x = (MTXRifft *) pd_new (mtx_rifft_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"),gensym(""));
x->list_re_out = outlet_new (&x->x_obj, gensym("matrix"));
return ((void *) x);
}
static void mTXRifftMatrixCold (MTXRifft *x, t_symbol *s,
int argc, t_atom *argv)
{
int rows = atom_getint (argv++);
int columns_re = atom_getint (argv++);
int in_size = argc-2;
int columns = (columns_re-1)<<1;
int size2 = columns_re * rows;
int size = rows * columns;
int ifft_count;
t_atom *list_re = x->list_re;
#ifdef USE_FFTW
fftw_complex *f_in = x->f_in;
double *f_out = x->f_out;
#else
t_float *f_re = x->f_re;
t_float *f_im = x->f_im;
#endif
/* ifftsize check */
if (columns_re < 3)
post("mtx_rifft: matrix must have at least 3 columns");
else if (!size)
post("mtx_rifft: invalid dimensions");
else if (in_size < size2)
post("mtx_rifft: sparse matrix not yet supported: use \"mtx_check\"");
else if (columns<4)
post("mtx_rifft: too small matrices");
else if (columns == (1 << ilog2(columns))) {
/* memory things */
#ifdef USE_FFTW
if ((x->rows!=rows)||(columns!=x->columns)){
for (ifft_count=0;ifft_count<x->rows;ifft_count++) {
fftw_destroy_plan(x->fftplan[ifft_count]);
}
x->fftplan=(fftw_plan*)realloc(x->fftplan,sizeof(fftw_plan)*rows);
f_in=(fftw_complex*)realloc(f_in,sizeof(fftw_complex)*size2);
f_out=(double*)realloc(f_out,sizeof(double)*size);
list_re=(t_atom*)realloc(list_re, sizeof(t_atom)*(size+2));
x->list_re = list_re;
x->f_out = f_out;
x->f_in = f_in;
for (ifft_count=0;ifft_count<rows;ifft_count++) {
x->fftplan[ifft_count]=fftw_plan_dft_c2r_1d(columns,f_in,f_out,FFTW_ESTIMATE);
f_out+=columns;
f_in+=columns_re;
}
f_in=x->f_in;
f_out=x->f_out;
}
#else
f_re=(t_float*)realloc(f_re, sizeof(t_float)*size);
f_im=(t_float*)realloc(f_im, sizeof(t_float)*size);
x->f_re = f_re;
x->f_im = f_im;
list_re=(t_atom*)realloc(list_re, sizeof(t_atom)*(size+2));
x->list_re = list_re;
#endif
x->size = size;
x->size2 = size2;
x->rows = rows;
x->columns = columns;
x->columns_re = columns_re;
/* main part: reading imaginary part */
ifft_count = rows;
x->renorm_fac = 1.0f / columns;
for (ifft_count=0;ifft_count<rows;ifft_count++) {
#ifdef USE_FFTW
readFFTWComplexPartFromList(columns_re, argv, f_in, IMAGPART);
f_in += columns_re;
#else
readFloatFromList (columns_re, argv, f_im);
f_im += columns;
#endif
argv += columns_re;
}
/* do nothing else! */
}
else
post("mtx_rifft: rowvector 2*(size+1) no power of 2!");
}
static void mTXRifftMatrixHot (MTXRifft *x, t_symbol *s,
int argc, t_atom *argv)
{
int rows = atom_getint (argv++);
int columns_re = atom_getint (argv++);
int columns = x->columns;
int size = x->size;
int in_size = argc-2;
int size2 = x->size2;
int ifft_count;
#ifdef USE_FFTW
fftw_complex *f_in = x->f_in;
#else
t_float *f_re = x->f_re;
t_float *f_im = x->f_im;
#endif
t_float renorm_fac = x->renorm_fac;
/* ifftsize check */
if ((rows != x->rows) ||
(columns_re != x->columns_re))
post("mtx_rifft: matrix dimensions do not match");
else if (in_size<size2)
post("mtx_rifft: sparse matrix not yet supported: use \"mtx_check\"");
else if (!x->size2)
post("mtx_rifft: invalid right side matrix");
else { /* main part */
for (ifft_count=0;ifft_count<rows;ifft_count++){
#ifdef USE_FFTW
readFFTWComplexPartFromList(columns_re,argv,f_in,REALPART);
fftw_execute(x->fftplan[ifft_count]);
f_in+=columns_re;
#else
readFloatFromList (columns_re, argv, f_re);
ifftPrepareReal (columns, f_re, f_im);
mayer_realifft (columns, f_re);
f_im += columns;
f_re += columns;
#endif
argv += columns_re;
}
#ifndef USE_FFTW
f_re = x->f_re;
#endif
size2 = x->size2;
SETFLOAT(x->list_re, rows);
SETFLOAT(x->list_re+1, x->columns);
#ifdef USE_FFTW
multiplyDoubleVector (size, x->f_out, renorm_fac);
writeDoubleIntoList (size, x->list_re+2, x->f_out);
#else
multiplyVector (size, f_re, renorm_fac);
writeFloatIntoList (size, x->list_re+2, f_re);
#endif
outlet_anything(x->list_re_out, gensym("matrix"), size+2, x->list_re);
}
}
static void mTXRifftBang (MTXRifft *x)
{
if (x->list_re)
outlet_anything(x->list_re_out, gensym("matrix"),
x->size+2, x->list_re);
}
static void deleteMTXRifft (MTXRifft *x)
{
#ifdef USE_FFTW
int n;
if (x->fftplan) {
for (n=0; n<x->rows; n++)
fftw_destroy_plan(x->fftplan[n]);
free(x->fftplan);
}
if (x->f_out)
free(x->f_out);
if (x->f_in)
free(x->f_in);
#else
if (x->f_re)
free(x->f_re);
if (x->f_im)
free(x->f_im);
#endif
if (x->list_re)
free(x->list_re);
if (x->list_im)
free(x->list_im);
}
void mtx_rifft_setup (void)
{
mtx_rifft_class = class_new
(gensym("mtx_rifft"),
(t_newmethod) newMTXRifft,
(t_method) deleteMTXRifft,
sizeof (MTXRifft),
CLASS_DEFAULT, A_GIMME, 0);
class_addbang (mtx_rifft_class, (t_method) mTXRifftBang);
class_addmethod (mtx_rifft_class, (t_method) mTXRifftMatrixHot, gensym("matrix"), A_GIMME,0);
class_addmethod (mtx_rifft_class, (t_method) mTXRifftMatrixCold, gensym(""), A_GIMME,0);
}
void iemtx_rifft_setup(void){
mtx_rifft_setup();
}
|