1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/*
* iemmatrix
*
* objects for manipulating simple matrices
* mostly refering to matlab/octave matrix functions
*
* Copyright (c) 2005, Franz Zotter
* IEM, Graz, Austria
*
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.
*
*/
#include "iemmatrix.h"
#include <stdlib.h>
static t_class *mtx_rowrifft_class;
typedef struct _MTXRowrifft_
{
t_object x_obj;
int rows;
int columns;
int columns_re;
int size;
int size2;
t_float renorm_fac;
t_float *f_re;
t_float *f_im;
t_outlet *list_re_out;
t_outlet *list_im_out;
t_atom *list_re;
t_atom *list_im;
} MTXRowrifft;
// helper functions: these should really go into a separate file!
static void zeroFloatArray (int n, t_float *f)
{
while (n--)
*f++ = 0.0f;
}
static void writeFloatIntoList (int n, t_atom *l, t_float *f)
{
for (;n--;f++, l++)
SETFLOAT (l, *f);
}
static void readFloatFromList (int n, t_atom *l, t_float *f)
{
while (n--)
*f++ = atom_getfloat (l++);
}
//--------------inverse real fft
static void multiplyVector (int n, t_float *f, t_float fac)
{
while (n--)
*f++ *= fac;
}
static void ifftPrepareReal (int n, t_float *re, t_float *im)
{
n >>= 1;
re += n;
im += n;
while (--n)
*++re = -*--im;
}
static void *newMTXRowrifft (t_symbol *s, int argc, t_atom *argv)
{
MTXRowrifft *x = (MTXRowrifft *) pd_new (mtx_rowrifft_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("matrix"),gensym(""));
x->list_re_out = outlet_new (&x->x_obj, gensym("matrix"));
return ((void *) x);
}
static void mTXrowrifftMatrixCold (MTXRowrifft *x, t_symbol *s,
int argc, t_atom *argv)
{
//mTXrowrifftList (x, s, argc-2, argv+2);
int rows = atom_getint (argv++);
int columns_re = atom_getint (argv++);
int in_size = argc-2;
int columns = (columns_re-1)<<1;
int size2 = columns_re * rows;
int size = rows * columns;
int ifft_count;
t_atom *list_re = x->list_re;
t_float *f_re = x->f_re;
t_float *f_im = x->f_im;
// ifftsize check
if (columns_re < 3)
post("mtx_rowrifft: matrix must have at least 3 columns");
else if (!size)
post("mtx_rowrifft: invalid dimensions");
else if (in_size < size2)
post("mtx_rowrifft: sparse matrix not yet supported: use \"mtx_check\"");
else if (columns<4)
post("mtx_rowrifft: too small matrices");
else if (columns == (1 << ilog2(columns))) {
// memory things
f_re=(t_float*)realloc(f_re, sizeof(t_float)*size);
f_im=(t_float*)realloc(f_im, sizeof(t_float)*size);
list_re=(t_atom*)realloc(list_re, sizeof(t_atom)*(size+2));
x->size = size;
x->size2 = size2;
x->rows = rows;
x->columns = columns;
x->columns_re = columns_re;
x->list_re = list_re;
x->f_re = f_re;
x->f_im = f_im;
// main part: reading imaginary part
ifft_count = rows;
x->renorm_fac = 1.0f / columns;
while (ifft_count--) {
readFloatFromList (columns_re, argv, f_im);
argv += columns_re;
f_im += columns;
}
// do nothing else!
}
else
post("mtx_rowrifft: rowvector 2*(size+1) no power of 2!");
}
static void mTXrowrifftMatrixHot (MTXRowrifft *x, t_symbol *s,
int argc, t_atom *argv)
{
//mTXrowrifftList (x, s, argc-2, argv+2);
int rows = atom_getint (argv++);
int columns_re = atom_getint (argv++);
int columns = x->columns;
int size = x->size;
int in_size = argc-2;
int size2 = x->size2;
int ifft_count;
t_atom *ptr_re = x->list_re;
t_float *f_re = x->f_re;
t_float *f_im = x->f_im;
t_float renorm_fac = x->renorm_fac;
// ifftsize check
if ((rows != x->rows) ||
(columns_re != x->columns_re))
post("mtx_rowrifft: matrix dimensions do not match");
else if (in_size<size2)
post("mtx_rowrifft: sparse matrix not yet supported: use \"mtx_check\"");
else if (!x->size2)
post("mtx_rowrifft: invalid right side matrix");
else { // main part
ifft_count = rows;
ptr_re += 2;
while (ifft_count--){
readFloatFromList (columns_re, argv, f_re);
ifftPrepareReal (columns, f_re, f_im);
mayer_realifft (columns, f_re);
multiplyVector (columns, f_re, renorm_fac);
f_im += columns;
f_re += columns;
ptr_re += columns;
argv += columns_re;
}
ptr_re = x->list_re;
f_re = x->f_re;
size2 = x->size2;
SETSYMBOL(ptr_re, gensym("matrix"));
SETFLOAT(ptr_re, rows);
SETFLOAT(&ptr_re[1], x->columns);
writeFloatIntoList (size, ptr_re+2, f_re);
outlet_anything(x->list_re_out, gensym("matrix"), size+2, ptr_re);
}
}
static void mTXrowrifftBang (MTXRowrifft *x)
{
if (x->list_re)
outlet_anything(x->list_re_out, gensym("matrix"),
x->size+2, x->list_re);
}
static void deleteMTXRowrifft (MTXRowrifft *x)
{
free(x->f_re);
free(x->f_im);
free(x->list_re);
free(x->list_im);
}
static void mtx_rowrifft_setup (void)
{
mtx_rowrifft_class = class_new
(gensym("mtx_rowrifft"),
(t_newmethod) newMTXRowrifft,
(t_method) deleteMTXRowrifft,
sizeof (MTXRowrifft),
CLASS_DEFAULT, A_GIMME, 0);
class_addbang (mtx_rowrifft_class, (t_method) mTXrowrifftBang);
class_addmethod (mtx_rowrifft_class, (t_method) mTXrowrifftMatrixHot, gensym("matrix"), A_GIMME,0);
class_addmethod (mtx_rowrifft_class, (t_method) mTXrowrifftMatrixCold, gensym(""), A_GIMME,0);
}
void iemtx_rowrifft_setup(void){
mtx_rowrifft_setup();
}
|