aboutsummaryrefslogtreecommitdiff
path: root/markov-machine-help.pd
blob: db02b44cc6ee22701523146c50a2a12a5803713e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#N canvas 290 25 528 547 10;
#X text 132 380 current state;
#X msg 221 149 size 4;
#X obj 138 111 t b b b b b;
#X msg 221 170 row 1 1 2 3 4;
#X obj 88 331 markov-machine 4;
#X text 60 9 States are numbered from 1 to n.;
#X text 283 147 Already implied by argument.;
#X msg 215 192 row 2 4 3 2 1;
#X msg 220 215 row 3 200 300 4000 0;
#X msg 220 238 row 4 1 1 1 1;
#X text 337 240 Equal chances;
#X obj 4 153 cnv 15 50 50 empty empty empty 20 12 0 14 -258699 -66577
0;
#X obj 86 60 cnv 15 50 50 empty empty empty 20 12 0 14 -258699 -66577
0;
#X msg 18 165 next;
#X msg 91 66 bang;
#X obj -34 245 cnv 15 50 50 empty empty empty 20 12 0 14 -258699 -66577
0;
#X msg -30 257 set 1;
#X text 92 43 1 Setup;
#X text 4 133 2 Get state;
#X text -34 225 3 Set state;
#X msg 276 294 content;
#X obj -40 -118 cnv 15 450 125 empty empty empty 20 12 0 14 -258699
-66577 0;
#X obj 277 -17 iemmatrix;
#X obj 370 -17 zexy;
#X text -26 -117 )c( Copyleft 2006 Alexandre Quessy http://alexandre.quessy.net/
;
#X text 71 -16 Using -lib iemmatrix \, zexy;
#X text 374 -134 ABOUT;
#X obj 138 87 loadbang;
#X text 210 331 A four states weighted FSM;
#X obj 88 364 nbx 1 28 -1e+37 1e+37 0 0 empty empty empty 0 -6 0 24
-258699 -1 -1 0 256;
#X text -26 -86 [markov-machine] is a weighted finite states machine
using an adjacency matrix for storing probabilities to obtain every
other state next \, It can be illustrated as an oriented graph. Probabilities
are calculated on the sum of each numbers or every row.;
#X connect 1 0 4 0;
#X connect 2 0 9 0;
#X connect 2 1 8 0;
#X connect 2 2 7 0;
#X connect 2 3 3 0;
#X connect 2 4 1 0;
#X connect 3 0 4 0;
#X connect 4 0 29 0;
#X connect 7 0 4 0;
#X connect 8 0 4 0;
#X connect 9 0 4 0;
#X connect 13 0 4 0;
#X connect 14 0 2 0;
#X connect 16 0 4 0;
#X connect 20 0 4 0;
#X connect 27 0 2 0;