aboutsummaryrefslogtreecommitdiff
path: root/src/ann_td.c
diff options
context:
space:
mode:
authorIOhannes m zmölnig <zmoelnig@users.sourceforge.net>2005-05-19 14:07:23 +0000
committerIOhannes m zmölnig <zmoelnig@users.sourceforge.net>2005-05-19 14:07:23 +0000
commite5ec4c7486a51d35050466f2234102cb57f9cce5 (patch)
treefaa0628884c0451ac5b7d43c78c04b6f9776a2db /src/ann_td.c
parentd0caa75bcc981df942b506e011021c8134383d4b (diff)
shut down the compiler...
svn path=/trunk/externals/ann/; revision=3028
Diffstat (limited to 'src/ann_td.c')
-rwxr-xr-xsrc/ann_td.c147
1 files changed, 73 insertions, 74 deletions
diff --git a/src/ann_td.c b/src/ann_td.c
index c2cf6b5..0184139 100755
--- a/src/ann_td.c
+++ b/src/ann_td.c
@@ -30,8 +30,8 @@ typedef struct _ann_td {
int mode; // 0 = training, 1 = running
t_symbol *filename; // name of the file where this ann is saved
t_symbol *filenametrain; // name of the file with training data
- float desired_error;
- unsigned int max_iterations;
+ float desired_error;
+ unsigned int max_iterations;
unsigned int iterations_between_reports;
unsigned int frames;
unsigned int num_input;
@@ -71,59 +71,59 @@ void allocate_inputs(t_ann_td *x)
}
void createFann(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
-{
- unsigned int num_input = 2;
- unsigned int num_output = 1;
- unsigned int num_layers = 3;
- unsigned int num_neurons_hidden = 3;
- float connection_rate = 1;
- float learning_rate = (float)0.7;
-
- if (argc<3)
- {
- error("you must provide at least num_input, num_output amd frames number");
- return;
- }
- if (argc>0)
- num_input = atom_getint(argv++);
-
- if (argc>1)
- num_output = atom_getint(argv++);
-
- if (argc>2)
- {
- x->frames = atom_getint(argv++);
- x->ins_frames_set=1;
- }
-
- if (argc>3)
- num_layers = atom_getint(argv++);
-
- if (argc>4)
- num_neurons_hidden = atom_getint(argv++);
-
- if (argc>5)
- connection_rate = atom_getfloat(argv++);
-
- if (argc>6)
- learning_rate = atom_getfloat(argv++);
-
- if ((num_input * x->frames)>=MAXINPUT)
- {
- error("too many inputs, maximum allowed is %f", MAXINPUT/x->frames);
- return;
- }
-
- if (num_output>=MAXOUTPUT)
- {
- error("too many outputs, maximum allowed is MAXOUTPUT");
- return;
- }
-
- x->ann = fann_create(connection_rate, learning_rate, num_layers,
- (num_input*x->frames), num_neurons_hidden, num_output);
-
- fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC);
+{
+ unsigned int num_input = 2;
+ unsigned int num_output = 1;
+ unsigned int num_layers = 3;
+ unsigned int num_neurons_hidden = 3;
+ float connection_rate = 1;
+ float learning_rate = (float)0.7;
+
+ if (argc<3)
+ {
+ error("you must provide at least num_input, num_output amd frames number");
+ return;
+ }
+ if (argc>0)
+ num_input = atom_getint(argv++);
+
+ if (argc>1)
+ num_output = atom_getint(argv++);
+
+ if (argc>2)
+ {
+ x->frames = atom_getint(argv++);
+ x->ins_frames_set=1;
+ }
+
+ if (argc>3)
+ num_layers = atom_getint(argv++);
+
+ if (argc>4)
+ num_neurons_hidden = atom_getint(argv++);
+
+ if (argc>5)
+ connection_rate = atom_getfloat(argv++);
+
+ if (argc>6)
+ learning_rate = atom_getfloat(argv++);
+
+ if ((num_input * x->frames)>=MAXINPUT)
+ {
+ error("too many inputs, maximum allowed is %f", MAXINPUT/x->frames);
+ return;
+ }
+
+ if (num_output>=MAXOUTPUT)
+ {
+ error("too many outputs, maximum allowed is MAXOUTPUT");
+ return;
+ }
+
+ x->ann = fann_create(connection_rate, learning_rate, num_layers,
+ (num_input*x->frames), num_neurons_hidden, num_output);
+
+ fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC);
allocate_inputs(x);
@@ -186,25 +186,25 @@ void set_mode(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
void train_on_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
-{
+{
if (x->ann == 0)
{
error("ann not initialized");
return;
- }
-
- if (argc<1)
- {
- error("you must specify the filename with training data");
- return;
- } else
- {
- x->filenametrain = atom_gensym(argv);
- }
-
- //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name);
-
- fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations,
+ }
+
+ if (argc<1)
+ {
+ error("you must specify the filename with training data");
+ return;
+ } else
+ {
+ x->filenametrain = atom_gensym(argv);
+ }
+
+ //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name);
+
+ fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations,
x->iterations_between_reports, x->desired_error);
post("ann_td: finished training on file %s", x->filenametrain->s_name);
@@ -277,7 +277,6 @@ void run_the_net(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
{
int i=0;
unsigned j=0;
- unsigned k=0;
//fann_type input[MAXINPUT];
fann_type *calc_out;
t_atom lista[MAXOUTPUT];
@@ -575,8 +574,8 @@ void *nn_new(t_symbol *s, int argc, t_atom *argv)
x->l_out = outlet_new(&x->x_obj, &s_list);
x->f_out = outlet_new(&x->x_obj, &s_float);
- x->desired_error = (float)0.001;
- x->max_iterations = 500000;
+ x->desired_error = (float)0.001;
+ x->max_iterations = 500000;
x->iterations_between_reports = 1000;
x->mode=RUN;
x->ins_frames_set=0;
@@ -662,4 +661,4 @@ void ann_td_setup(void) {
class_sethelpsymbol(ann_td_class, gensym("help-ann_td"));
-} \ No newline at end of file
+}