diff options
-rwxr-xr-x | README.txt | 9 | ||||
-rwxr-xr-x | src/ann_mlp.c | 1503 | ||||
-rwxr-xr-x | src/ann_td.c | 1325 |
3 files changed, 1420 insertions, 1417 deletions
@@ -12,14 +12,15 @@ ann_mlp: multi layer perceptrons ann_td: time delay
-FANN libraries are required for ann_mlp and ann_td, see
+FANN libraries version 1.2 are required for ann_mlp and ann_td, see
http://fann.sourceforge.net/
+(ann works only with 1.2 version)
---------- Windows users (MSVC):
go to http://fann.sourceforge.net/ and download fann libs
-(current is http://prdownloads.sourceforge.net/fann/fann-1.2.0.zip?download)
+(use 1.2 version)
go to MSVC++ folder and open all.dsw
compile everything
go in the ann/src folder
@@ -29,7 +30,7 @@ nmake makefile.msvc ---------- Linux users:
-go to http://fann.sourceforge.net/ and download fann libs
+go to http://fann.sourceforge.net/ and download 1.2 fann libs
compile fann libs from source
if you don't compile from source edit ann/src/makefile.linux
and set correct PATHs
@@ -42,7 +43,7 @@ ann_mlp and ann_td have never been compiled on irix ---------- OsX users:
-go to http://fann.sourceforge.net/ and download fann libs
+go to http://fann.sourceforge.net/ and download 1.2 fann libs
compile fann libs from source
if you don't compile from source edit ann/src/makefile.darwin
and set correct PATHs
diff --git a/src/ann_mlp.c b/src/ann_mlp.c index 096b21a..53f61da 100755 --- a/src/ann_mlp.c +++ b/src/ann_mlp.c @@ -1,751 +1,752 @@ -/* nn : Neural Networks for PD - by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it - this software is simply an interface for FANN classes - http://fann.sourceforge.net/ - FANN is obviously needed for compilation - this software is licensed under the GNU General Public License -*/ - -/* - hacked by Georg Holzmann for some additional methods, bug fixes, ... - 2005, grh@mur.at -*/ - -#include <stdio.h> -#include <string.h> -#include "m_pd.h" -#include "fann.h" - -#ifndef VERSION -#define VERSION "0.2" -#endif - -#ifndef __DATE__ -#define __DATE__ "" -#endif - -#define TRAIN 0 -#define RUN 1 - -static t_class *ann_mlp_class; - -typedef struct _ann_mlp { - t_object x_obj; - struct fann *ann; - int mode; // 0 = training, 1 = running - t_symbol *filename; // name of the file where this ann is saved - t_symbol *filenametrain; // name of the file with training data - float desired_error; - unsigned int max_iterations; - unsigned int iterations_between_reports; - fann_type *input; // grh: storage for input - t_atom *output; // grh: storage for output (t_atom) - fann_type *out_float; // grh: storage for output (fann_type) - t_canvas *x_canvas; - t_outlet *l_out, *f_out; -} t_ann_mlp; - -// allocation -static void ann_mlp_allocate_storage(t_ann_mlp *x) -{ - unsigned int i; - - if(!x->ann) - return; - - x->input = (fann_type *)getbytes(x->ann->num_input*sizeof(fann_type)); - x->output = (t_atom *)getbytes(x->ann->num_output*sizeof(t_atom)); - x->out_float = (fann_type *)getbytes(x->ann->num_output*sizeof(fann_type)); - - // init storage with zeros - for (i=0; i<x->ann->num_input; i++) - x->input[i]=0; - for (i=0; i<x->ann->num_output; i++) - { - SETFLOAT(x->output+i, 0); - x->out_float[i]=0; - } -} - -// deallocation -static void ann_mlp_free(t_ann_mlp *x) -{ - if(!x->ann) - return; - - freebytes(x->input, x->ann->num_input * sizeof(fann_type)); - freebytes(x->output, x->ann->num_output * sizeof(t_atom)); - freebytes(x->out_float, x->ann->num_output * sizeof(fann_type)); - fann_destroy(x->ann); -} - -static void ann_mlp_help(t_ann_mlp *x) -{ - post(""); - post("ann_mlp: neural nets for PD"); - post("ann_mlp:Davide Morelli - info@davidemorelli.it - (c)2005"); - post("ann_mlp:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output"); - post("ann_mlp:main commands: create, filename, load, save, train-on-file, run"); - post("ann_mlp:see help-nn.pd for details on commands and usage"); - post("ann_mlp:this is an interface to FANN"); - -} - -static void ann_mlp_createFann(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int num_input = 2; - unsigned int num_output = 1; - unsigned int num_layers = 3; - unsigned int *neurons_per_layer = NULL; - int activated=0; - int i, count_args = 0; - float connection_rate = 1; - float learning_rate = (float)0.7; - - - // okay, start parsing init args ... - - if (argc > count_args++) - num_input = atom_getint(argv++); - - if (argc > count_args++) - num_output = atom_getint(argv++); - - if (argc > count_args++) - { - int hidden=0; - - num_layers = atom_getint(argv++); - hidden = num_layers-2; - - neurons_per_layer = (unsigned int *)getbytes(num_layers*sizeof(unsigned int)); - - neurons_per_layer[0] = num_input; - - // make standard initialization (if there are too few init args) - for (i=1; i<hidden+1; i++) - neurons_per_layer[i] = 3; - - // now check init args - for (i=1; i<hidden+1; i++) - { - if (argc > count_args++) - neurons_per_layer[i] = atom_getint(argv++); - } - - neurons_per_layer[num_layers-1] = num_output; - - activated=1; - } - - if (argc > count_args++) - connection_rate = atom_getfloat(argv++); - - if (argc > count_args++) - learning_rate = atom_getfloat(argv++); - - // make one hidden layer as standard, if there were too few init args - if(!activated) - { - neurons_per_layer = (unsigned int *)getbytes(3*sizeof(unsigned int)); - neurons_per_layer[0] = num_input; - neurons_per_layer[1] = 3; - neurons_per_layer[2] = num_output; - } - - // ... end of parsing init args - - - if(x->ann) - ann_mlp_free(x); - - x->ann = fann_create_array(connection_rate, learning_rate, num_layers, neurons_per_layer); - - // deallocate helper array - freebytes(neurons_per_layer, num_layers * sizeof(unsigned int)); - - if(!x->ann) - { - error("error creating the ann"); - return; - } - - ann_mlp_allocate_storage(x); - fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC); - fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC); - - // set error log to stdout, so that you see it in the pd console - //fann_set_error_log((struct fann_error*)x->ann, stdout); - // unfortunately this doesn't work ... but it should do in a similar way !! - - post("created ann with:"); - post("num_input = %i", num_input); - post("num_output = %i", num_output); - post("num_layers = %i", num_layers); - post("connection_rate = %f", connection_rate); - post("learning_rate = %f", learning_rate); -} - -static void ann_mlp_print_status(t_ann_mlp *x) -{ - if (x->mode == TRAIN) - post("nn:training"); - else - post("nn:running"); -} - -static void ann_mlp_train(t_ann_mlp *x) -{ - x->mode=TRAIN; - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - fann_reset_MSE(x->ann); - ann_mlp_print_status(x); -} - -static void ann_mlp_run(t_ann_mlp *x) -{ - x->mode=RUN; - ann_mlp_print_status(x); -} - -static void ann_mlp_set_mode(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc<1) - { - error("usage: setmode 0/1: 0 for training, 1 for running"); - } - else - { - x->mode = atom_getint(argv++); - ann_mlp_print_status(x); - } -} - -static void ann_mlp_train_on_file(t_ann_mlp *x, t_symbol *s) -{ - // make correct path - char patcher_path[MAXPDSTRING]; - char filename[MAXPDSTRING]; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - // make correct path - canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING); - sys_bashfilename(patcher_path, filename); - x->filenametrain = gensym(filename); - - if(!x->filenametrain) - return; - - post("nn: starting training on file %s, please be patient and wait ... (it could take severeal minutes to complete training)", x->filenametrain->s_name); - - fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations, - x->iterations_between_reports, x->desired_error); - - post("ann_mlp: finished training on file %s", x->filenametrain->s_name); -} - -static void ann_mlp_set_desired_error(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - float desired_error = (float)0.001; - if (0<argc) - { - desired_error = atom_getfloat(argv); - x->desired_error = desired_error; - post("nn:desired_error set to %f", x->desired_error); - } else - { - error("you must pass me a float"); - } -} - -static void ann_mlp_set_max_iterations(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int max_iterations = 500000; - if (argc>0) - { - max_iterations = atom_getint(argv); - x->max_iterations = max_iterations; - post("nn:max_iterations set to %i", x->max_iterations); - } else - { - error("you must pass me an int"); - } -} - -static void ann_mlp_set_iterations_between_reports(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - - unsigned int iterations_between_reports = 1000; - if (argc>0) - { - iterations_between_reports = atom_getint(argv); - x->iterations_between_reports = iterations_between_reports; - post("nn:iterations_between_reports set to %i", x->iterations_between_reports); - } else - { - error("you must pass me an int"); - } - -} - -// run the ann using floats in list passed to the inlet as input values -// and send result to outlet as list of float -static void ann_mlp_run_the_net(t_ann_mlp *x, t_symbol *sl, unsigned int argc, t_atom *argv) -{ - unsigned int i=0; - fann_type *calc_out; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if(argc < x->ann->num_input) - { - error("ann_mlp: too few input values!!"); - return; - } - - // fill input array with actual data sent to inlet - for (i=0;i<x->ann->num_input;i++) - { - x->input[i] = atom_getfloat(argv++); - } - - // run the ann - calc_out = fann_run(x->ann, x->input); - - // fill the output array with result from ann - for (i=0;i<x->ann->num_output;i++) - SETFLOAT(x->output+i, calc_out[i]); - - // send output array to outlet - outlet_anything(x->l_out, gensym("list"), - x->ann->num_output, x->output); -} - -static void ann_mlp_train_on_the_fly(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - int i=0; - int quantiINs, quantiOUTs; - float mse; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - quantiINs = x->ann->num_input; - quantiOUTs = x->ann->num_output; - - if ((quantiINs + quantiOUTs)>argc) - { - error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats"); - return; - } - - // fill input array with actual data sent to inlet - for (i=0;i<quantiINs;i++) - x->input[i] = atom_getfloat(argv++); - - for (i=0;i<quantiOUTs;i++) - x->out_float[i] = atom_getfloat(argv++); - - //fann_reset_MSE(x->ann); - - fann_train(x->ann, x->input, x->out_float); - - mse = fann_get_MSE(x->ann); - - outlet_float(x->f_out, mse); -} - -static void ann_mlp_manage_list(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->mode) - ann_mlp_run_the_net(x, sl, argc, argv); - else - { - ann_mlp_train_on_the_fly(x, sl, argc, argv); - } -} - -static void ann_mlp_set_filename(t_ann_mlp *x, t_symbol *s) -{ - // make correct path - char patcher_path[MAXPDSTRING]; - char filename[MAXPDSTRING]; - - if(!s) - return; - - // make correct path - canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING); - sys_bashfilename(patcher_path, filename); - x->filename = gensym(filename); -} - -static void ann_mlp_load_ann_from_file(t_ann_mlp *x, t_symbol *s) -{ - ann_mlp_set_filename(x,s); - - if(!x->filename) - { - error("ann: no filename !!!"); - return; - } - - // deallocate storage - if(x->ann) - ann_mlp_free(x); - - x->ann = fann_create_from_file(x->filename->s_name); - - if (x->ann == 0) - error("error opening %s", x->filename->s_name); - else - post("nn:ann loaded fom file %s", x->filename->s_name); - - // allocate storage - ann_mlp_allocate_storage(x); -} - -static void ann_mlp_save_ann_to_file(t_ann_mlp *x, t_symbol *s) -{ - ann_mlp_set_filename(x,s); - - if(!x->filename) - { - error("ann: no filename !!!"); - return; - } - - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_save(x->ann, x->filename->s_name); - post("nn:ann saved in file %s", x->filename->s_name); - } -} - -// functions for training algo: -static void ann_mlp_set_FANN_TRAIN_INCREMENTAL(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL); - post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL"); - } -} -static void ann_mlp_set_FANN_TRAIN_BATCH(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH); - post("nn:training algorithm set to FANN_TRAIN_BATCH"); - } -} -static void ann_mlp_set_FANN_TRAIN_RPROP(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP); - post("nn:training algorithm set to FANN_TRAIN_RPROP"); - } -} -static void ann_mlp_set_FANN_TRAIN_QUICKPROP(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP); - post("nn:training algorithm set to FANN_TRAIN_QUICKPROP"); - } -} - -static void ann_mlp_set_activation_function_output(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_symbol *parametro = 0; - int funzione = 0; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc>0) { - parametro = atom_gensym(argv); - if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) - funzione = FANN_THRESHOLD; - if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) - funzione = FANN_THRESHOLD_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_LINEAR")==0) - funzione = FANN_LINEAR; - if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) - funzione = FANN_SIGMOID; - if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) - funzione = FANN_SIGMOID_STEPWISE; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) - funzione = FANN_SIGMOID_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) - funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0) - funzione = FANN_GAUSSIAN; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0) - funzione = FANN_GAUSSIAN_STEPWISE; - if (strcmp(parametro->s_name, "FANN_ELLIOT")==0) - funzione = FANN_ELLIOT; - if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0) - funzione = FANN_ELLIOT_SYMMETRIC; - - fann_set_activation_function_output(x->ann, funzione); - } else - { - error("you must specify the activation function"); - } - post("nn:activation function set to %s (%i)", parametro->s_name, funzione); - -} - -static void ann_mlp_set_activation_function_hidden(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_symbol *parametro = 0; - int funzione = 0; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc>0) { - parametro = atom_gensym(argv); - if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) - funzione = FANN_THRESHOLD; - if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) - funzione = FANN_THRESHOLD_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_LINEAR")==0) - funzione = FANN_LINEAR; - if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) - funzione = FANN_SIGMOID; - if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) - funzione = FANN_SIGMOID_STEPWISE; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) - funzione = FANN_SIGMOID_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) - funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0) - funzione = FANN_GAUSSIAN; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0) - funzione = FANN_GAUSSIAN_STEPWISE; - if (strcmp(parametro->s_name, "FANN_ELLIOT")==0) - funzione = FANN_ELLIOT; - if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0) - funzione = FANN_ELLIOT_SYMMETRIC; - - fann_set_activation_function_hidden(x->ann, funzione); - } else - { - error("you must specify the activation function"); - } - post("nn:activation function set to %s (%i)", parametro->s_name, funzione); - -} - -static void ann_mlp_randomize_weights(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_float min = -1; - t_float max = 1; - - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - if (argc>0) - min = atom_getfloat(argv++); - - if (argc>1) - max = atom_getfloat(argv++); - - fann_randomize_weights(x->ann, min, max); -} - -static void ann_mlp_learnrate(t_ann_mlp *x, t_float f) -{ - int learnrate = 0; - - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - learnrate = (f<0) ? 0 : f; - fann_set_learning_rate(x->ann, learnrate); -} - -static void ann_mlp_set_activation_steepness_hidden(t_ann_mlp *x, t_float f) -{ - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - fann_set_activation_steepness_hidden(x->ann, f); -} - -static void ann_mlp_set_activation_steepness_output(t_ann_mlp *x, t_float f) -{ - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - fann_set_activation_steepness_output(x->ann, f); -} - -void fann_set_activation_steepness_hidden(struct fann * ann, fann_type steepness); - -static void ann_mlp_print_ann_details(t_ann_mlp *x) -{ - if (x->ann == 0) - { - post("ann_mlp:ann is not initialized"); - } else - { - post("follows a description of the current ann:"); - post("num_input=%i", x->ann->num_input); - post("num_output=%i", x->ann->num_output); - post("learning_rate=%f", x->ann->learning_rate); - post("connection_rate=%f", x->ann->connection_rate); - post("total_neurons=%i", x->ann->total_neurons); - post("total_connections=%i", x->ann->total_connections); - post("last error=%i", x->ann->errstr); - if (x->filename == 0) - { - post("ann_mlp:filename not set"); - } else - { - post("filename=%s", x->filename->s_name); - } - } -} - -static void ann_mlp_print_ann_print(t_ann_mlp *x) -{ - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - fann_print_connections(x->ann); - fann_print_parameters(x->ann); -} - -static void *ann_mlp_new(t_symbol *s, int argc, t_atom *argv) -{ - t_ann_mlp *x = (t_ann_mlp *)pd_new(ann_mlp_class); - x->l_out = outlet_new(&x->x_obj, &s_list); - x->f_out = outlet_new(&x->x_obj, &s_float); - - x->desired_error = (float)0.001; - x->max_iterations = 500000; - x->iterations_between_reports = 1000; - x->mode=RUN; - x->x_canvas = canvas_getcurrent(); - x->filename = NULL; - x->filenametrain = NULL; - x->ann = NULL; - x->input = NULL; - x->output = NULL; - x->out_float = NULL; - - if (argc>0) { - x->filename = atom_gensym(argv); - ann_mlp_load_ann_from_file(x, NULL); - } - - return (void *)x; -} - -void ann_mlp_setup(void) { - post(""); - post("ann_mlp: multilayer perceptron for PD"); - post("version: "VERSION""); - post("compiled: "__DATE__); - post("author: Davide Morelli"); - post("contact: info@davidemorelli.it www.davidemorelli.it"); - - ann_mlp_class = class_new(gensym("ann_mlp"), - (t_newmethod)ann_mlp_new, - (t_method)ann_mlp_free, sizeof(t_ann_mlp), - CLASS_DEFAULT, A_GIMME, 0); - - // general.. - class_addmethod(ann_mlp_class, (t_method)ann_mlp_help, gensym("help"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_createFann, gensym("create"), A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_train, gensym("train"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_run, gensym("run"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_mode, gensym("setmode"), A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_train_on_file, gensym("train-on-file"), A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_manage_list, gensym("data"), A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_filename, gensym("filename"), A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_load_ann_from_file, gensym("load"),A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_save_ann_to_file, gensym("save"),A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_details, gensym("details"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_print, gensym("print"), 0); - - // change training parameters - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_desired_error, gensym("desired_error"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_max_iterations, gensym("max_iterations"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_learnrate, gensym("learnrate"), A_FLOAT, 0); - - // change training and activation algorithms - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_hidden, gensym("set_activation_function_hidden"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_hidden, gensym("set_activation_steepness_hidden"), A_FLOAT, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_output, gensym("set_activation_steepness_output"), A_FLOAT, 0); - - // initialization: - class_addmethod(ann_mlp_class, (t_method)ann_mlp_randomize_weights, gensym("randomize_weights"),A_GIMME, 0); - - // the most important one: running the ann - class_addlist(ann_mlp_class, (t_method)ann_mlp_manage_list); - - -} +/* ann_mlp : Neural Networks for PD
+ by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it
+ this software is simply an interface for FANN classes
+ http://fann.sourceforge.net/
+ FANN is obviously needed for compilation
+ USE 1.2 VERSION ONLY
+ this software is licensed under the GNU General Public License
+*/
+
+/*
+ hacked by Georg Holzmann for some additional methods, bug fixes, ...
+ 2005, grh@mur.at
+*/
+
+#include <stdio.h>
+#include <string.h>
+#include "m_pd.h"
+#include "fann.h"
+
+#ifndef VERSION
+#define VERSION "0.2"
+#endif
+
+#ifndef __DATE__
+#define __DATE__ ""
+#endif
+
+#define TRAIN 0
+#define RUN 1
+
+static t_class *ann_mlp_class;
+
+typedef struct _ann_mlp {
+ t_object x_obj;
+ struct fann *ann;
+ int mode; // 0 = training, 1 = running
+ t_symbol *filename; // name of the file where this ann is saved
+ t_symbol *filenametrain; // name of the file with training data
+ float desired_error;
+ unsigned int max_iterations;
+ unsigned int iterations_between_reports;
+ fann_type *input; // grh: storage for input
+ t_atom *output; // grh: storage for output (t_atom)
+ fann_type *out_float; // grh: storage for output (fann_type)
+ t_canvas *x_canvas;
+ t_outlet *l_out, *f_out;
+} t_ann_mlp;
+
+// allocation
+static void ann_mlp_allocate_storage(t_ann_mlp *x)
+{
+ unsigned int i;
+
+ if(!x->ann)
+ return;
+
+ x->input = (fann_type *)getbytes(x->ann->num_input*sizeof(fann_type));
+ x->output = (t_atom *)getbytes(x->ann->num_output*sizeof(t_atom));
+ x->out_float = (fann_type *)getbytes(x->ann->num_output*sizeof(fann_type));
+
+ // init storage with zeros
+ for (i=0; i<x->ann->num_input; i++)
+ x->input[i]=0;
+ for (i=0; i<x->ann->num_output; i++)
+ {
+ SETFLOAT(x->output+i, 0);
+ x->out_float[i]=0;
+ }
+}
+
+// deallocation
+static void ann_mlp_free(t_ann_mlp *x)
+{
+ if(!x->ann)
+ return;
+
+ freebytes(x->input, x->ann->num_input * sizeof(fann_type));
+ freebytes(x->output, x->ann->num_output * sizeof(t_atom));
+ freebytes(x->out_float, x->ann->num_output * sizeof(fann_type));
+ fann_destroy(x->ann);
+}
+
+static void ann_mlp_help(t_ann_mlp *x)
+{
+ post("");
+ post("ann_mlp: neural nets for PD");
+ post("ann_mlp:Davide Morelli - info@davidemorelli.it - (c)2005");
+ post("ann_mlp:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output");
+ post("ann_mlp:main commands: create, filename, load, save, train-on-file, run");
+ post("ann_mlp:see help-nn.pd for details on commands and usage");
+ post("ann_mlp:this is an interface to FANN");
+
+}
+
+static void ann_mlp_createFann(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ unsigned int num_input = 2;
+ unsigned int num_output = 1;
+ unsigned int num_layers = 3;
+ unsigned int *neurons_per_layer = NULL;
+ int activated=0;
+ int i, count_args = 0;
+ float connection_rate = 1;
+ float learning_rate = (float)0.7;
+
+
+ // okay, start parsing init args ...
+
+ if (argc > count_args++)
+ num_input = atom_getint(argv++);
+
+ if (argc > count_args++)
+ num_output = atom_getint(argv++);
+
+ if (argc > count_args++)
+ {
+ int hidden=0;
+
+ num_layers = atom_getint(argv++);
+ hidden = num_layers-2;
+
+ neurons_per_layer = (unsigned int *)getbytes(num_layers*sizeof(unsigned int));
+
+ neurons_per_layer[0] = num_input;
+
+ // make standard initialization (if there are too few init args)
+ for (i=1; i<hidden+1; i++)
+ neurons_per_layer[i] = 3;
+
+ // now check init args
+ for (i=1; i<hidden+1; i++)
+ {
+ if (argc > count_args++)
+ neurons_per_layer[i] = atom_getint(argv++);
+ }
+
+ neurons_per_layer[num_layers-1] = num_output;
+
+ activated=1;
+ }
+
+ if (argc > count_args++)
+ connection_rate = atom_getfloat(argv++);
+
+ if (argc > count_args++)
+ learning_rate = atom_getfloat(argv++);
+
+ // make one hidden layer as standard, if there were too few init args
+ if(!activated)
+ {
+ neurons_per_layer = (unsigned int *)getbytes(3*sizeof(unsigned int));
+ neurons_per_layer[0] = num_input;
+ neurons_per_layer[1] = 3;
+ neurons_per_layer[2] = num_output;
+ }
+
+ // ... end of parsing init args
+
+
+ if(x->ann)
+ ann_mlp_free(x);
+
+ x->ann = fann_create_array(connection_rate, learning_rate, num_layers, neurons_per_layer);
+
+ // deallocate helper array
+ freebytes(neurons_per_layer, num_layers * sizeof(unsigned int));
+
+ if(!x->ann)
+ {
+ error("error creating the ann");
+ return;
+ }
+
+ ann_mlp_allocate_storage(x);
+ fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC);
+ fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC);
+
+ // set error log to stdout, so that you see it in the pd console
+ //fann_set_error_log((struct fann_error*)x->ann, stdout);
+ // unfortunately this doesn't work ... but it should do in a similar way !!
+
+ post("created ann with:");
+ post("num_input = %i", num_input);
+ post("num_output = %i", num_output);
+ post("num_layers = %i", num_layers);
+ post("connection_rate = %f", connection_rate);
+ post("learning_rate = %f", learning_rate);
+}
+
+static void ann_mlp_print_status(t_ann_mlp *x)
+{
+ if (x->mode == TRAIN)
+ post("nn:training");
+ else
+ post("nn:running");
+}
+
+static void ann_mlp_train(t_ann_mlp *x)
+{
+ x->mode=TRAIN;
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+ fann_reset_MSE(x->ann);
+ ann_mlp_print_status(x);
+}
+
+static void ann_mlp_run(t_ann_mlp *x)
+{
+ x->mode=RUN;
+ ann_mlp_print_status(x);
+}
+
+static void ann_mlp_set_mode(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (argc<1)
+ {
+ error("usage: setmode 0/1: 0 for training, 1 for running");
+ }
+ else
+ {
+ x->mode = atom_getint(argv++);
+ ann_mlp_print_status(x);
+ }
+}
+
+static void ann_mlp_train_on_file(t_ann_mlp *x, t_symbol *s)
+{
+ // make correct path
+ char patcher_path[MAXPDSTRING];
+ char filename[MAXPDSTRING];
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ // make correct path
+ canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING);
+ sys_bashfilename(patcher_path, filename);
+ x->filenametrain = gensym(filename);
+
+ if(!x->filenametrain)
+ return;
+
+ post("nn: starting training on file %s, please be patient and wait ... (it could take severeal minutes to complete training)", x->filenametrain->s_name);
+
+ fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations,
+ x->iterations_between_reports, x->desired_error);
+
+ post("ann_mlp: finished training on file %s", x->filenametrain->s_name);
+}
+
+static void ann_mlp_set_desired_error(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ float desired_error = (float)0.001;
+ if (0<argc)
+ {
+ desired_error = atom_getfloat(argv);
+ x->desired_error = desired_error;
+ post("nn:desired_error set to %f", x->desired_error);
+ } else
+ {
+ error("you must pass me a float");
+ }
+}
+
+static void ann_mlp_set_max_iterations(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ unsigned int max_iterations = 500000;
+ if (argc>0)
+ {
+ max_iterations = atom_getint(argv);
+ x->max_iterations = max_iterations;
+ post("nn:max_iterations set to %i", x->max_iterations);
+ } else
+ {
+ error("you must pass me an int");
+ }
+}
+
+static void ann_mlp_set_iterations_between_reports(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+
+ unsigned int iterations_between_reports = 1000;
+ if (argc>0)
+ {
+ iterations_between_reports = atom_getint(argv);
+ x->iterations_between_reports = iterations_between_reports;
+ post("nn:iterations_between_reports set to %i", x->iterations_between_reports);
+ } else
+ {
+ error("you must pass me an int");
+ }
+
+}
+
+// run the ann using floats in list passed to the inlet as input values
+// and send result to outlet as list of float
+static void ann_mlp_run_the_net(t_ann_mlp *x, t_symbol *sl, unsigned int argc, t_atom *argv)
+{
+ unsigned int i=0;
+ fann_type *calc_out;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if(argc < x->ann->num_input)
+ {
+ error("ann_mlp: too few input values!!");
+ return;
+ }
+
+ // fill input array with actual data sent to inlet
+ for (i=0;i<x->ann->num_input;i++)
+ {
+ x->input[i] = atom_getfloat(argv++);
+ }
+
+ // run the ann
+ calc_out = fann_run(x->ann, x->input);
+
+ // fill the output array with result from ann
+ for (i=0;i<x->ann->num_output;i++)
+ SETFLOAT(x->output+i, calc_out[i]);
+
+ // send output array to outlet
+ outlet_anything(x->l_out, gensym("list"),
+ x->ann->num_output, x->output);
+}
+
+static void ann_mlp_train_on_the_fly(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ int i=0;
+ int quantiINs, quantiOUTs;
+ float mse;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ quantiINs = x->ann->num_input;
+ quantiOUTs = x->ann->num_output;
+
+ if ((quantiINs + quantiOUTs)>argc)
+ {
+ error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats");
+ return;
+ }
+
+ // fill input array with actual data sent to inlet
+ for (i=0;i<quantiINs;i++)
+ x->input[i] = atom_getfloat(argv++);
+
+ for (i=0;i<quantiOUTs;i++)
+ x->out_float[i] = atom_getfloat(argv++);
+
+ //fann_reset_MSE(x->ann);
+
+ fann_train(x->ann, x->input, x->out_float);
+
+ mse = fann_get_MSE(x->ann);
+
+ outlet_float(x->f_out, mse);
+}
+
+static void ann_mlp_manage_list(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (x->mode)
+ ann_mlp_run_the_net(x, sl, argc, argv);
+ else
+ {
+ ann_mlp_train_on_the_fly(x, sl, argc, argv);
+ }
+}
+
+static void ann_mlp_set_filename(t_ann_mlp *x, t_symbol *s)
+{
+ // make correct path
+ char patcher_path[MAXPDSTRING];
+ char filename[MAXPDSTRING];
+
+ if(!s)
+ return;
+
+ // make correct path
+ canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING);
+ sys_bashfilename(patcher_path, filename);
+ x->filename = gensym(filename);
+}
+
+static void ann_mlp_load_ann_from_file(t_ann_mlp *x, t_symbol *s)
+{
+ ann_mlp_set_filename(x,s);
+
+ if(!x->filename)
+ {
+ error("ann: no filename !!!");
+ return;
+ }
+
+ // deallocate storage
+ if(x->ann)
+ ann_mlp_free(x);
+
+ x->ann = fann_create_from_file(x->filename->s_name);
+
+ if (x->ann == 0)
+ error("error opening %s", x->filename->s_name);
+ else
+ post("nn:ann loaded fom file %s", x->filename->s_name);
+
+ // allocate storage
+ ann_mlp_allocate_storage(x);
+}
+
+static void ann_mlp_save_ann_to_file(t_ann_mlp *x, t_symbol *s)
+{
+ ann_mlp_set_filename(x,s);
+
+ if(!x->filename)
+ {
+ error("ann: no filename !!!");
+ return;
+ }
+
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_save(x->ann, x->filename->s_name);
+ post("nn:ann saved in file %s", x->filename->s_name);
+ }
+}
+
+// functions for training algo:
+static void ann_mlp_set_FANN_TRAIN_INCREMENTAL(t_ann_mlp *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL);
+ post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL");
+ }
+}
+static void ann_mlp_set_FANN_TRAIN_BATCH(t_ann_mlp *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH);
+ post("nn:training algorithm set to FANN_TRAIN_BATCH");
+ }
+}
+static void ann_mlp_set_FANN_TRAIN_RPROP(t_ann_mlp *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP);
+ post("nn:training algorithm set to FANN_TRAIN_RPROP");
+ }
+}
+static void ann_mlp_set_FANN_TRAIN_QUICKPROP(t_ann_mlp *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP);
+ post("nn:training algorithm set to FANN_TRAIN_QUICKPROP");
+ }
+}
+
+static void ann_mlp_set_activation_function_output(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ t_symbol *parametro = 0;
+ int funzione = 0;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if (argc>0) {
+ parametro = atom_gensym(argv);
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0)
+ funzione = FANN_THRESHOLD;
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0)
+ funzione = FANN_THRESHOLD_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_LINEAR")==0)
+ funzione = FANN_LINEAR;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID")==0)
+ funzione = FANN_SIGMOID;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0)
+ funzione = FANN_SIGMOID_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0)
+ funzione = FANN_GAUSSIAN;
+ if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0)
+ funzione = FANN_GAUSSIAN_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_ELLIOT")==0)
+ funzione = FANN_ELLIOT;
+ if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0)
+ funzione = FANN_ELLIOT_SYMMETRIC;
+
+ fann_set_activation_function_output(x->ann, funzione);
+ } else
+ {
+ error("you must specify the activation function");
+ }
+ post("nn:activation function set to %s (%i)", parametro->s_name, funzione);
+
+}
+
+static void ann_mlp_set_activation_function_hidden(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ t_symbol *parametro = 0;
+ int funzione = 0;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if (argc>0) {
+ parametro = atom_gensym(argv);
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0)
+ funzione = FANN_THRESHOLD;
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0)
+ funzione = FANN_THRESHOLD_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_LINEAR")==0)
+ funzione = FANN_LINEAR;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID")==0)
+ funzione = FANN_SIGMOID;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0)
+ funzione = FANN_SIGMOID_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0)
+ funzione = FANN_GAUSSIAN;
+ if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0)
+ funzione = FANN_GAUSSIAN_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_ELLIOT")==0)
+ funzione = FANN_ELLIOT;
+ if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0)
+ funzione = FANN_ELLIOT_SYMMETRIC;
+
+ fann_set_activation_function_hidden(x->ann, funzione);
+ } else
+ {
+ error("you must specify the activation function");
+ }
+ post("nn:activation function set to %s (%i)", parametro->s_name, funzione);
+
+}
+
+static void ann_mlp_randomize_weights(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ t_float min = -1;
+ t_float max = 1;
+
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ if (argc>0)
+ min = atom_getfloat(argv++);
+
+ if (argc>1)
+ max = atom_getfloat(argv++);
+
+ fann_randomize_weights(x->ann, min, max);
+}
+
+static void ann_mlp_learnrate(t_ann_mlp *x, t_float f)
+{
+ int learnrate = 0;
+
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ learnrate = (f<0) ? 0 : f;
+ fann_set_learning_rate(x->ann, learnrate);
+}
+
+static void ann_mlp_set_activation_steepness_hidden(t_ann_mlp *x, t_float f)
+{
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ fann_set_activation_steepness_hidden(x->ann, f);
+}
+
+static void ann_mlp_set_activation_steepness_output(t_ann_mlp *x, t_float f)
+{
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ fann_set_activation_steepness_output(x->ann, f);
+}
+
+void fann_set_activation_steepness_hidden(struct fann * ann, fann_type steepness);
+
+static void ann_mlp_print_ann_details(t_ann_mlp *x)
+{
+ if (x->ann == 0)
+ {
+ post("ann_mlp:ann is not initialized");
+ } else
+ {
+ post("follows a description of the current ann:");
+ post("num_input=%i", x->ann->num_input);
+ post("num_output=%i", x->ann->num_output);
+ post("learning_rate=%f", x->ann->learning_rate);
+ post("connection_rate=%f", x->ann->connection_rate);
+ post("total_neurons=%i", x->ann->total_neurons);
+ post("total_connections=%i", x->ann->total_connections);
+ post("last error=%i", x->ann->errstr);
+ if (x->filename == 0)
+ {
+ post("ann_mlp:filename not set");
+ } else
+ {
+ post("filename=%s", x->filename->s_name);
+ }
+ }
+}
+
+static void ann_mlp_print_ann_print(t_ann_mlp *x)
+{
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ fann_print_connections(x->ann);
+ fann_print_parameters(x->ann);
+}
+
+static void *ann_mlp_new(t_symbol *s, int argc, t_atom *argv)
+{
+ t_ann_mlp *x = (t_ann_mlp *)pd_new(ann_mlp_class);
+ x->l_out = outlet_new(&x->x_obj, &s_list);
+ x->f_out = outlet_new(&x->x_obj, &s_float);
+
+ x->desired_error = (float)0.001;
+ x->max_iterations = 500000;
+ x->iterations_between_reports = 1000;
+ x->mode=RUN;
+ x->x_canvas = canvas_getcurrent();
+ x->filename = NULL;
+ x->filenametrain = NULL;
+ x->ann = NULL;
+ x->input = NULL;
+ x->output = NULL;
+ x->out_float = NULL;
+
+ if (argc>0) {
+ x->filename = atom_gensym(argv);
+ ann_mlp_load_ann_from_file(x, NULL);
+ }
+
+ return (void *)x;
+}
+
+void ann_mlp_setup(void) {
+ post("");
+ post("ann_mlp: multilayer perceptron for PD");
+ post("version: "VERSION"");
+ post("compiled: "__DATE__);
+ post("author: Davide Morelli");
+ post("contact: info@davidemorelli.it www.davidemorelli.it");
+
+ ann_mlp_class = class_new(gensym("ann_mlp"),
+ (t_newmethod)ann_mlp_new,
+ (t_method)ann_mlp_free, sizeof(t_ann_mlp),
+ CLASS_DEFAULT, A_GIMME, 0);
+
+ // general..
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_help, gensym("help"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_createFann, gensym("create"), A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_train, gensym("train"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_run, gensym("run"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_mode, gensym("setmode"), A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_train_on_file, gensym("train-on-file"), A_DEFSYMBOL, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_manage_list, gensym("data"), A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_filename, gensym("filename"), A_DEFSYMBOL, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_load_ann_from_file, gensym("load"),A_DEFSYMBOL, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_save_ann_to_file, gensym("save"),A_DEFSYMBOL, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_details, gensym("details"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_print, gensym("print"), 0);
+
+ // change training parameters
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_desired_error, gensym("desired_error"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_max_iterations, gensym("max_iterations"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_learnrate, gensym("learnrate"), A_FLOAT, 0);
+
+ // change training and activation algorithms
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_hidden, gensym("set_activation_function_hidden"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_hidden, gensym("set_activation_steepness_hidden"), A_FLOAT, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_output, gensym("set_activation_steepness_output"), A_FLOAT, 0);
+
+ // initialization:
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_randomize_weights, gensym("randomize_weights"),A_GIMME, 0);
+
+ // the most important one: running the ann
+ class_addlist(ann_mlp_class, (t_method)ann_mlp_manage_list);
+
+
+}
diff --git a/src/ann_td.c b/src/ann_td.c index 307ab8d..f135d09 100755 --- a/src/ann_td.c +++ b/src/ann_td.c @@ -1,662 +1,663 @@ -/* ann_td : Time Delay Neural Networks for PD - by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it - this software is simply an interface for FANN classes - http://fann.sourceforge.net/ - FANN is obviously needed for compilation - this software is licensed under the GNU General Public License -*/ -#include <stdio.h> -#include <string.h> -#include "m_pd.h" -#include "fann.h" - -#ifndef VERSION -#define VERSION "0.2" -#endif - -#ifndef __DATE__ -#define __DATE__ "" -#endif - -#define TRAIN 0 -#define RUN 1 - -#define MAXINPUT 1024 -#define MAXOUTPUT 256 - -static t_class *ann_td_class; - -typedef struct _ann_td { - t_object x_obj; - struct fann *ann; - int mode; // 0 = training, 1 = running - t_symbol *filename; // name of the file where this ann is saved - t_symbol *filenametrain; // name of the file with training data - float desired_error; - unsigned int max_iterations; - unsigned int iterations_between_reports; - unsigned int frames; - unsigned int num_input; - t_float *inputs; - unsigned int ins_frames_set; - t_outlet *l_out, *f_out; -} t_ann_td; - -static void ann_td_help(t_ann_td *x) -{ - post(""); - post("ann_td:time delay neural networks for PD"); - post("ann_td:Davide Morelli - info@davidemorelli.it - (c)2005"); - post("ann_td:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output"); - post("ann_td:main commands: create, filename, load, save, train-on-file, run"); - post("ann_td:see help-nn.pd for details on commands and usage"); - post("ann_td:this is an interface to FANN"); - -} - -static void ann_td_deallocate_inputs(t_ann_td *x) -{ - if (x->inputs != 0) - { - freebytes(x->inputs, sizeof(x->inputs)); - x->inputs = 0; - } -} - -static void ann_td_allocate_inputs(t_ann_td *x) -{ - unsigned int i; - ann_td_deallocate_inputs(x); - // allocate space for inputs array - x->inputs = (t_float *)getbytes((x->frames) * (x->num_input) * sizeof(t_float)); - for (i=0; i<(x->frames * x->num_input); i++) x->inputs[i]=0.f; -} - -static void ann_td_createFann(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int num_input = 2; - unsigned int num_output = 1; - unsigned int num_layers = 3; - unsigned int num_neurons_hidden = 3; - float connection_rate = 1; - float learning_rate = (float)0.7; - - if (argc<3) - { - error("you must provide at least num_input, num_output amd frames number"); - return; - } - if (argc>0) - num_input = atom_getint(argv++); - - if (argc>1) - num_output = atom_getint(argv++); - - if (argc>2) - { - x->frames = atom_getint(argv++); - x->ins_frames_set=1; - } - - if (argc>3) - num_layers = atom_getint(argv++); - - if (argc>4) - num_neurons_hidden = atom_getint(argv++); - - if (argc>5) - connection_rate = atom_getfloat(argv++); - - if (argc>6) - learning_rate = atom_getfloat(argv++); - - if ((num_input * x->frames)>MAXINPUT) - { - error("too many inputs, maximum allowed is %f", MAXINPUT/x->frames); - return; - } - - if (num_output>MAXOUTPUT) - { - error("too many outputs, maximum allowed is MAXOUTPUT"); - return; - } - - x->ann = fann_create(connection_rate, learning_rate, num_layers, - (num_input*x->frames), num_neurons_hidden, num_output); - - fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC); - fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC); - - ann_td_allocate_inputs(x); - - if (x->ann == 0) - { - error("error creating the ann"); - } else - { - post("ann_td:created ann with:"); - post("num_input = %i", num_input); - post("num_output = %i", num_output); - post("frames = %i", x->frames); - post("num_layers = %i", num_layers); - post("num_neurons_hidden = %i", num_neurons_hidden); - post("connection_rate = %f", connection_rate); - post("learning_rate = %f", learning_rate); - } -} - -static void ann_td_print_status(t_ann_td *x) -{ - if (x->mode == TRAIN) - post("ann_td:training"); - else - post("ann_td:running"); -} - -static void ann_td_train(t_ann_td *x) -{ - x->mode=TRAIN; - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - fann_reset_MSE(x->ann); - ann_td_print_status(x); -} - -static void ann_td_run(t_ann_td *x) -{ - x->mode=RUN; - ann_td_print_status(x); -} - -static void ann_td_set_mode(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc<1) - { - error("usage: setmode 0/1: 0 for training, 1 for running"); - } - else - { - x->mode = atom_getint(argv++); - ann_td_print_status(x); - } -} - - - -static void ann_td_train_on_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc<1) - { - error("you must specify the filename with training data"); - return; - } else - { - x->filenametrain = atom_gensym(argv); - } - - //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name); - - fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations, - x->iterations_between_reports, x->desired_error); - - post("ann_td: finished training on file %s", x->filenametrain->s_name); -} - -static void ann_td_set_desired_error(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - float desired_error = (float)0.001; - if (0<argc) - { - desired_error = atom_getfloat(argv); - x->desired_error = desired_error; - post("ann_td:desired_error set to %f", x->desired_error); - } else - { - error("you must pass me a float"); - } -} - -static void ann_td_set_max_iterations(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int max_iterations = 500000; - if (argc>0) - { - max_iterations = atom_getint(argv); - x->max_iterations = max_iterations; - post("ann_td:max_iterations set to %i", x->max_iterations); - } else - { - error("you must pass me an int"); - } -} - -static void ann_td_set_iterations_between_reports(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - - unsigned int iterations_between_reports = 1000; - if (argc>0) - { - iterations_between_reports = atom_getint(argv); - x->iterations_between_reports = iterations_between_reports; - post("ann_td:iterations_between_reports set to %i", x->iterations_between_reports); - } else - { - error("you must pass me an int"); - } - -} - - -static void ann_td_scale_inputs(t_ann_td *x) -{ - unsigned int j; - unsigned int k; - - for(j = (x->frames - 1); j>0; j--) - { - // scorro la lista all'indietro - for (k=0; k < x->num_input; k++) - { - // scalo i valori dei frames - x->inputs[(x->num_input) * j + k]=x->inputs[(x->num_input) * (j-1) + k]; - } - } -} - -// run the ann using floats in list passed to the inlet as input values -// and send result to outlet as list of float -static void ann_td_run_the_net(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - int i=0; - unsigned j=0; - //fann_type input[MAXINPUT]; - fann_type *calc_out; - t_atom lista[MAXOUTPUT]; - int quanti; - float valoreTMP; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (x->ins_frames_set==0) - { - error("num_inputs and frames not set"); - return; - } - - if (argc < (int) x->num_input) - { - error("insufficient inputs"); - return; - } - quanti = x->ann->num_output; - - ann_td_scale_inputs(x); - - // fill output array with zeros - for (i=0; i<MAXOUTPUT; i++) - { - SETFLOAT(lista + i,0); - } - - // fill input array with actual data sent to inlet - for (j=0; j < x->num_input ;j++) - { - //input[j] = atom_getfloat(argv++); - x->inputs[j] = atom_getfloat(argv++); - } - - // run the ann - //calc_out = fann_run(x->ann, input); - calc_out = fann_run(x->ann, x->inputs); - - // fill the output array with result from ann - for (i=0;i<quanti;i++) - { - valoreTMP = calc_out[i]; - //post("calc_out[%i]=%f", i, calc_out[i]); - SETFLOAT(lista+i, valoreTMP); - } - - // send output array to outlet - outlet_anything(x->l_out, - gensym("list") , - quanti, - lista); - -} - -static void ann_td_train_on_the_fly(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - int i=0; - unsigned int j=0; - fann_type input_merged[MAXINPUT]; - fann_type output[MAXOUTPUT]; - //fann_type *calcMSE; - //t_atom lista[MAXOUTPUT]; - float mse; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if ((x->num_input + x->ann->num_output) > (unsigned int) argc) - { - error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats"); - return; - } - - // fill input array with zeros - for (i=0; i<MAXINPUT; i++) - { - input_merged[i]=0; - } - // fill input array with zeros - for (i=0; i<MAXOUTPUT; i++) - { - output[i]=0; - } - - ann_td_scale_inputs(x); - - // fill input array with actual data sent to inlet - for (j = 0; j < x->num_input; j++) - { - input_merged[j] = atom_getfloat(argv++); - } - for (j = x->num_input; j < (x->num_input * x->frames); j++) - { - input_merged[j] = x->inputs[j]; - } - - for (j = 0; j < (x->ann->num_output);j++) - { - output[j] = atom_getfloat(argv++); - } - - //fann_reset_MSE(x->ann); - - fann_train(x->ann, input_merged, output); - - mse = fann_get_MSE(x->ann); - - outlet_float(x->f_out, mse); - - -} - -static void ann_td_manage_list(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->mode) - ann_td_run_the_net(x, sl, argc, argv); - else - { - ann_td_train_on_the_fly(x, sl, argc, argv); - } -} - -static void ann_td_set_filename(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc>0) { - x->filename = atom_gensym(argv); - } else - { - error("you must specify the filename"); - } - post("nn:filename set to %s", x->filename->s_name); -} - -static void ann_td_load_ann_from_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->ins_frames_set==0) - { - error("set num_input and frames with [inputs_frames int int("); - error("I won't load without num_input and frames set"); - return; - } - if (argc>0) { - x->filename = atom_gensym(argv); - } - x->ann = fann_create_from_file(x->filename->s_name); - if (x->ann == 0) - error("error opening %s", x->filename->s_name); - else - post("nn:ann loaded fom file %s", x->filename->s_name); - - ann_td_allocate_inputs(x); -} - -static void ann_td_save_ann_to_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc>0) { - x->filename = atom_gensym(argv); - } - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_save(x->ann, x->filename->s_name); - post("nn:ann saved in file %s", x->filename->s_name); - } -} - -// functions for training algo: -static void ann_td_set_FANN_TRAIN_INCREMENTAL(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL); - post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL"); - } -} -static void ann_td_set_FANN_TRAIN_BATCH(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH); - post("nn:training algorithm set to FANN_TRAIN_BATCH"); - } -} -static void ann_td_set_FANN_TRAIN_RPROP(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP); - post("nn:training algorithm set to FANN_TRAIN_RPROP"); - } -} -static void ann_td_set_FANN_TRAIN_QUICKPROP(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP); - post("nn:training algorithm set to FANN_TRAIN_QUICKPROP"); - } -} - -static void ann_td_set_activation_function_output(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_symbol *parametro = 0; - int funzione = 0; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc>0) { - parametro = atom_gensym(argv); - if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) - funzione = FANN_THRESHOLD; - if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) - funzione = FANN_THRESHOLD_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_LINEAR")==0) - funzione = FANN_LINEAR; - if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) - funzione = FANN_SIGMOID; - if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) - funzione = FANN_SIGMOID_STEPWISE; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) - funzione = FANN_SIGMOID_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) - funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; - fann_set_activation_function_output(x->ann, funzione); - } else - { - error("you must specify the activation function"); - } - post("nn:activation function set to %s (%i)", parametro->s_name, funzione); - -} - -static void ann_td_print_ann_details(t_ann_td *x) -{ - if (x->ann == 0) - { - post("ann_td:ann is not initialized"); - } else - { - post("follows a description of the current ann:"); - post("num_input=%i", x->ann->num_input); - post("num_output=%i", x->ann->num_output); - post("learning_rate=%f", x->ann->learning_rate); - post("connection_rate=%f", x->ann->connection_rate); - post("total_neurons=%i", x->ann->total_neurons); - post("total_connections=%i", x->ann->total_connections); - post("last error=%i", x->ann->errstr); - if (x->filename == 0) - { - post("filename not set"); - } else - { - post("filename=%s", x->filename->s_name); - } - } -} - -static void ann_td_set_num_input_frames(t_ann_td *x, t_floatarg ins, t_floatarg frames) -{ - x->num_input = ins; - x->frames = frames; - x->ins_frames_set=1; -} - -static void *ann_td_new(t_symbol *s, int argc, t_atom *argv) -{ - t_ann_td *x = (t_ann_td *)pd_new(ann_td_class); - x->l_out = outlet_new(&x->x_obj, &s_list); - x->f_out = outlet_new(&x->x_obj, &s_float); - - x->desired_error = (float)0.001; - x->max_iterations = 500000; - x->iterations_between_reports = 1000; - x->mode=RUN; - x->ins_frames_set=0; - - if (argc<2) - { - error("2 arguments needed: num_input and frames. filename optional"); - return (void *)x; - } - - if (argc>0) { - x->num_input = atom_getint(argv++); - } - - if (argc>1) { - x->frames = atom_getint(argv++); - x->ins_frames_set=1; - ann_td_allocate_inputs(x); - } - - if (argc>2) { - x->filename = atom_gensym(argv); - ann_td_load_ann_from_file(x, NULL , 0, NULL); - } - - return (void *)x; -} - -// free resources -static void ann_td_free(t_ann_td *x) -{ - struct fann *ann = x->ann; - fann_destroy(ann); - ann_td_deallocate_inputs(x); - // TODO: free other resources! -} - -void ann_td_setup(void) { - post(""); - post("ann_td: time delay neural nets for PD"); - post("version: "VERSION""); - post("compiled: "__DATE__); - post("author: Davide Morelli"); - post("contact: info@davidemorelli.it www.davidemorelli.it"); - - ann_td_class = class_new(gensym("ann_td"), - (t_newmethod)ann_td_new, - (t_method)ann_td_free, sizeof(t_ann_td), - CLASS_DEFAULT, A_GIMME, 0); - - // general.. - class_addmethod(ann_td_class, (t_method)ann_td_help, gensym("help"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_createFann, gensym("create"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_train, gensym("train"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_run, gensym("run"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_mode, gensym("setmode"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_train_on_file, gensym("train-on-file"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_manage_list, gensym("data"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_filename, gensym("filename"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_load_ann_from_file, gensym("load"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_save_ann_to_file, gensym("save"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_print_ann_details, gensym("details"), 0); - - // change training parameters - class_addmethod(ann_td_class, (t_method)ann_td_set_desired_error, gensym("desired_error"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_max_iterations, gensym("max_iterations"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0); - - // change training and activation algorithms - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0); - - class_addmethod(ann_td_class, (t_method)ann_td_set_num_input_frames, gensym("inputs_frames"),A_DEFFLOAT, A_DEFFLOAT, 0); - - // the most important one: running the ann - class_addlist(ann_td_class, (t_method)ann_td_manage_list); - - -} +/* ann_td : Time Delay Neural Networks for PD
+ by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it
+ this software is simply an interface for FANN classes
+ http://fann.sourceforge.net/
+ FANN is obviously needed for compilation
+ use 1.2 version only
+ this software is licensed under the GNU General Public License
+*/
+#include <stdio.h>
+#include <string.h>
+#include "m_pd.h"
+#include "fann.h"
+
+#ifndef VERSION
+#define VERSION "0.2"
+#endif
+
+#ifndef __DATE__
+#define __DATE__ ""
+#endif
+
+#define TRAIN 0
+#define RUN 1
+
+#define MAXINPUT 1024
+#define MAXOUTPUT 256
+
+static t_class *ann_td_class;
+
+typedef struct _ann_td {
+ t_object x_obj;
+ struct fann *ann;
+ int mode; // 0 = training, 1 = running
+ t_symbol *filename; // name of the file where this ann is saved
+ t_symbol *filenametrain; // name of the file with training data
+ float desired_error;
+ unsigned int max_iterations;
+ unsigned int iterations_between_reports;
+ unsigned int frames;
+ unsigned int num_input;
+ t_float *inputs;
+ unsigned int ins_frames_set;
+ t_outlet *l_out, *f_out;
+} t_ann_td;
+
+static void ann_td_help(t_ann_td *x)
+{
+ post("");
+ post("ann_td:time delay neural networks for PD");
+ post("ann_td:Davide Morelli - info@davidemorelli.it - (c)2005");
+ post("ann_td:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output");
+ post("ann_td:main commands: create, filename, load, save, train-on-file, run");
+ post("ann_td:see help-nn.pd for details on commands and usage");
+ post("ann_td:this is an interface to FANN");
+
+}
+
+static void ann_td_deallocate_inputs(t_ann_td *x)
+{
+ if (x->inputs != 0)
+ {
+ freebytes(x->inputs, sizeof(x->inputs));
+ x->inputs = 0;
+ }
+}
+
+static void ann_td_allocate_inputs(t_ann_td *x)
+{
+ unsigned int i;
+ ann_td_deallocate_inputs(x);
+ // allocate space for inputs array
+ x->inputs = (t_float *)getbytes((x->frames) * (x->num_input) * sizeof(t_float));
+ for (i=0; i<(x->frames * x->num_input); i++) x->inputs[i]=0.f;
+}
+
+static void ann_td_createFann(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ unsigned int num_input = 2;
+ unsigned int num_output = 1;
+ unsigned int num_layers = 3;
+ unsigned int num_neurons_hidden = 3;
+ float connection_rate = 1;
+ float learning_rate = (float)0.7;
+
+ if (argc<3)
+ {
+ error("you must provide at least num_input, num_output amd frames number");
+ return;
+ }
+ if (argc>0)
+ num_input = atom_getint(argv++);
+
+ if (argc>1)
+ num_output = atom_getint(argv++);
+
+ if (argc>2)
+ {
+ x->frames = atom_getint(argv++);
+ x->ins_frames_set=1;
+ }
+
+ if (argc>3)
+ num_layers = atom_getint(argv++);
+
+ if (argc>4)
+ num_neurons_hidden = atom_getint(argv++);
+
+ if (argc>5)
+ connection_rate = atom_getfloat(argv++);
+
+ if (argc>6)
+ learning_rate = atom_getfloat(argv++);
+
+ if ((num_input * x->frames)>MAXINPUT)
+ {
+ error("too many inputs, maximum allowed is %f", MAXINPUT/x->frames);
+ return;
+ }
+
+ if (num_output>MAXOUTPUT)
+ {
+ error("too many outputs, maximum allowed is MAXOUTPUT");
+ return;
+ }
+
+ x->ann = fann_create(connection_rate, learning_rate, num_layers,
+ (num_input*x->frames), num_neurons_hidden, num_output);
+
+ fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC);
+ fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC);
+
+ ann_td_allocate_inputs(x);
+
+ if (x->ann == 0)
+ {
+ error("error creating the ann");
+ } else
+ {
+ post("ann_td:created ann with:");
+ post("num_input = %i", num_input);
+ post("num_output = %i", num_output);
+ post("frames = %i", x->frames);
+ post("num_layers = %i", num_layers);
+ post("num_neurons_hidden = %i", num_neurons_hidden);
+ post("connection_rate = %f", connection_rate);
+ post("learning_rate = %f", learning_rate);
+ }
+}
+
+static void ann_td_print_status(t_ann_td *x)
+{
+ if (x->mode == TRAIN)
+ post("ann_td:training");
+ else
+ post("ann_td:running");
+}
+
+static void ann_td_train(t_ann_td *x)
+{
+ x->mode=TRAIN;
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+ fann_reset_MSE(x->ann);
+ ann_td_print_status(x);
+}
+
+static void ann_td_run(t_ann_td *x)
+{
+ x->mode=RUN;
+ ann_td_print_status(x);
+}
+
+static void ann_td_set_mode(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (argc<1)
+ {
+ error("usage: setmode 0/1: 0 for training, 1 for running");
+ }
+ else
+ {
+ x->mode = atom_getint(argv++);
+ ann_td_print_status(x);
+ }
+}
+
+
+
+static void ann_td_train_on_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if (argc<1)
+ {
+ error("you must specify the filename with training data");
+ return;
+ } else
+ {
+ x->filenametrain = atom_gensym(argv);
+ }
+
+ //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name);
+
+ fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations,
+ x->iterations_between_reports, x->desired_error);
+
+ post("ann_td: finished training on file %s", x->filenametrain->s_name);
+}
+
+static void ann_td_set_desired_error(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ float desired_error = (float)0.001;
+ if (0<argc)
+ {
+ desired_error = atom_getfloat(argv);
+ x->desired_error = desired_error;
+ post("ann_td:desired_error set to %f", x->desired_error);
+ } else
+ {
+ error("you must pass me a float");
+ }
+}
+
+static void ann_td_set_max_iterations(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ unsigned int max_iterations = 500000;
+ if (argc>0)
+ {
+ max_iterations = atom_getint(argv);
+ x->max_iterations = max_iterations;
+ post("ann_td:max_iterations set to %i", x->max_iterations);
+ } else
+ {
+ error("you must pass me an int");
+ }
+}
+
+static void ann_td_set_iterations_between_reports(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+
+ unsigned int iterations_between_reports = 1000;
+ if (argc>0)
+ {
+ iterations_between_reports = atom_getint(argv);
+ x->iterations_between_reports = iterations_between_reports;
+ post("ann_td:iterations_between_reports set to %i", x->iterations_between_reports);
+ } else
+ {
+ error("you must pass me an int");
+ }
+
+}
+
+
+static void ann_td_scale_inputs(t_ann_td *x)
+{
+ unsigned int j;
+ unsigned int k;
+
+ for(j = (x->frames - 1); j>0; j--)
+ {
+ // scorro la lista all'indietro
+ for (k=0; k < x->num_input; k++)
+ {
+ // scalo i valori dei frames
+ x->inputs[(x->num_input) * j + k]=x->inputs[(x->num_input) * (j-1) + k];
+ }
+ }
+}
+
+// run the ann using floats in list passed to the inlet as input values
+// and send result to outlet as list of float
+static void ann_td_run_the_net(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ int i=0;
+ unsigned j=0;
+ //fann_type input[MAXINPUT];
+ fann_type *calc_out;
+ t_atom lista[MAXOUTPUT];
+ int quanti;
+ float valoreTMP;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if (x->ins_frames_set==0)
+ {
+ error("num_inputs and frames not set");
+ return;
+ }
+
+ if (argc < (int) x->num_input)
+ {
+ error("insufficient inputs");
+ return;
+ }
+ quanti = x->ann->num_output;
+
+ ann_td_scale_inputs(x);
+
+ // fill output array with zeros
+ for (i=0; i<MAXOUTPUT; i++)
+ {
+ SETFLOAT(lista + i,0);
+ }
+
+ // fill input array with actual data sent to inlet
+ for (j=0; j < x->num_input ;j++)
+ {
+ //input[j] = atom_getfloat(argv++);
+ x->inputs[j] = atom_getfloat(argv++);
+ }
+
+ // run the ann
+ //calc_out = fann_run(x->ann, input);
+ calc_out = fann_run(x->ann, x->inputs);
+
+ // fill the output array with result from ann
+ for (i=0;i<quanti;i++)
+ {
+ valoreTMP = calc_out[i];
+ //post("calc_out[%i]=%f", i, calc_out[i]);
+ SETFLOAT(lista+i, valoreTMP);
+ }
+
+ // send output array to outlet
+ outlet_anything(x->l_out,
+ gensym("list") ,
+ quanti,
+ lista);
+
+}
+
+static void ann_td_train_on_the_fly(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ int i=0;
+ unsigned int j=0;
+ fann_type input_merged[MAXINPUT];
+ fann_type output[MAXOUTPUT];
+ //fann_type *calcMSE;
+ //t_atom lista[MAXOUTPUT];
+ float mse;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if ((x->num_input + x->ann->num_output) > (unsigned int) argc)
+ {
+ error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats");
+ return;
+ }
+
+ // fill input array with zeros
+ for (i=0; i<MAXINPUT; i++)
+ {
+ input_merged[i]=0;
+ }
+ // fill input array with zeros
+ for (i=0; i<MAXOUTPUT; i++)
+ {
+ output[i]=0;
+ }
+
+ ann_td_scale_inputs(x);
+
+ // fill input array with actual data sent to inlet
+ for (j = 0; j < x->num_input; j++)
+ {
+ input_merged[j] = atom_getfloat(argv++);
+ }
+ for (j = x->num_input; j < (x->num_input * x->frames); j++)
+ {
+ input_merged[j] = x->inputs[j];
+ }
+
+ for (j = 0; j < (x->ann->num_output);j++)
+ {
+ output[j] = atom_getfloat(argv++);
+ }
+
+ //fann_reset_MSE(x->ann);
+
+ fann_train(x->ann, input_merged, output);
+
+ mse = fann_get_MSE(x->ann);
+
+ outlet_float(x->f_out, mse);
+
+
+}
+
+static void ann_td_manage_list(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (x->mode)
+ ann_td_run_the_net(x, sl, argc, argv);
+ else
+ {
+ ann_td_train_on_the_fly(x, sl, argc, argv);
+ }
+}
+
+static void ann_td_set_filename(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (argc>0) {
+ x->filename = atom_gensym(argv);
+ } else
+ {
+ error("you must specify the filename");
+ }
+ post("nn:filename set to %s", x->filename->s_name);
+}
+
+static void ann_td_load_ann_from_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (x->ins_frames_set==0)
+ {
+ error("set num_input and frames with [inputs_frames int int(");
+ error("I won't load without num_input and frames set");
+ return;
+ }
+ if (argc>0) {
+ x->filename = atom_gensym(argv);
+ }
+ x->ann = fann_create_from_file(x->filename->s_name);
+ if (x->ann == 0)
+ error("error opening %s", x->filename->s_name);
+ else
+ post("nn:ann loaded fom file %s", x->filename->s_name);
+
+ ann_td_allocate_inputs(x);
+}
+
+static void ann_td_save_ann_to_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ if (argc>0) {
+ x->filename = atom_gensym(argv);
+ }
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_save(x->ann, x->filename->s_name);
+ post("nn:ann saved in file %s", x->filename->s_name);
+ }
+}
+
+// functions for training algo:
+static void ann_td_set_FANN_TRAIN_INCREMENTAL(t_ann_td *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL);
+ post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL");
+ }
+}
+static void ann_td_set_FANN_TRAIN_BATCH(t_ann_td *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH);
+ post("nn:training algorithm set to FANN_TRAIN_BATCH");
+ }
+}
+static void ann_td_set_FANN_TRAIN_RPROP(t_ann_td *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP);
+ post("nn:training algorithm set to FANN_TRAIN_RPROP");
+ }
+}
+static void ann_td_set_FANN_TRAIN_QUICKPROP(t_ann_td *x)
+{
+ if (x->ann == 0)
+ {
+ error("ann is not initialized");
+ } else
+ {
+ fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP);
+ post("nn:training algorithm set to FANN_TRAIN_QUICKPROP");
+ }
+}
+
+static void ann_td_set_activation_function_output(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ t_symbol *parametro = 0;
+ int funzione = 0;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if (argc>0) {
+ parametro = atom_gensym(argv);
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0)
+ funzione = FANN_THRESHOLD;
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0)
+ funzione = FANN_THRESHOLD_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_LINEAR")==0)
+ funzione = FANN_LINEAR;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID")==0)
+ funzione = FANN_SIGMOID;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0)
+ funzione = FANN_SIGMOID_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE;
+ fann_set_activation_function_output(x->ann, funzione);
+ } else
+ {
+ error("you must specify the activation function");
+ }
+ post("nn:activation function set to %s (%i)", parametro->s_name, funzione);
+
+}
+
+static void ann_td_print_ann_details(t_ann_td *x)
+{
+ if (x->ann == 0)
+ {
+ post("ann_td:ann is not initialized");
+ } else
+ {
+ post("follows a description of the current ann:");
+ post("num_input=%i", x->ann->num_input);
+ post("num_output=%i", x->ann->num_output);
+ post("learning_rate=%f", x->ann->learning_rate);
+ post("connection_rate=%f", x->ann->connection_rate);
+ post("total_neurons=%i", x->ann->total_neurons);
+ post("total_connections=%i", x->ann->total_connections);
+ post("last error=%i", x->ann->errstr);
+ if (x->filename == 0)
+ {
+ post("filename not set");
+ } else
+ {
+ post("filename=%s", x->filename->s_name);
+ }
+ }
+}
+
+static void ann_td_set_num_input_frames(t_ann_td *x, t_floatarg ins, t_floatarg frames)
+{
+ x->num_input = ins;
+ x->frames = frames;
+ x->ins_frames_set=1;
+}
+
+static void *ann_td_new(t_symbol *s, int argc, t_atom *argv)
+{
+ t_ann_td *x = (t_ann_td *)pd_new(ann_td_class);
+ x->l_out = outlet_new(&x->x_obj, &s_list);
+ x->f_out = outlet_new(&x->x_obj, &s_float);
+
+ x->desired_error = (float)0.001;
+ x->max_iterations = 500000;
+ x->iterations_between_reports = 1000;
+ x->mode=RUN;
+ x->ins_frames_set=0;
+
+ if (argc<2)
+ {
+ error("2 arguments needed: num_input and frames. filename optional");
+ return (void *)x;
+ }
+
+ if (argc>0) {
+ x->num_input = atom_getint(argv++);
+ }
+
+ if (argc>1) {
+ x->frames = atom_getint(argv++);
+ x->ins_frames_set=1;
+ ann_td_allocate_inputs(x);
+ }
+
+ if (argc>2) {
+ x->filename = atom_gensym(argv);
+ ann_td_load_ann_from_file(x, NULL , 0, NULL);
+ }
+
+ return (void *)x;
+}
+
+// free resources
+static void ann_td_free(t_ann_td *x)
+{
+ struct fann *ann = x->ann;
+ fann_destroy(ann);
+ ann_td_deallocate_inputs(x);
+ // TODO: free other resources!
+}
+
+void ann_td_setup(void) {
+ post("");
+ post("ann_td: time delay neural nets for PD");
+ post("version: "VERSION"");
+ post("compiled: "__DATE__);
+ post("author: Davide Morelli");
+ post("contact: info@davidemorelli.it www.davidemorelli.it");
+
+ ann_td_class = class_new(gensym("ann_td"),
+ (t_newmethod)ann_td_new,
+ (t_method)ann_td_free, sizeof(t_ann_td),
+ CLASS_DEFAULT, A_GIMME, 0);
+
+ // general..
+ class_addmethod(ann_td_class, (t_method)ann_td_help, gensym("help"), 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_createFann, gensym("create"), A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_train, gensym("train"), 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_run, gensym("run"), 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_mode, gensym("setmode"), A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_train_on_file, gensym("train-on-file"), A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_manage_list, gensym("data"), A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_filename, gensym("filename"), A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_load_ann_from_file, gensym("load"),A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_save_ann_to_file, gensym("save"),A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_print_ann_details, gensym("details"), 0);
+
+ // change training parameters
+ class_addmethod(ann_td_class, (t_method)ann_td_set_desired_error, gensym("desired_error"),A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_max_iterations, gensym("max_iterations"),A_GIMME, 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0);
+
+ // change training and activation algorithms
+ class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0);
+ class_addmethod(ann_td_class, (t_method)ann_td_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0);
+
+ class_addmethod(ann_td_class, (t_method)ann_td_set_num_input_frames, gensym("inputs_frames"),A_DEFFLOAT, A_DEFFLOAT, 0);
+
+ // the most important one: running the ann
+ class_addlist(ann_td_class, (t_method)ann_td_manage_list);
+
+
+}
|