aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rwxr-xr-xsrc/ann_mlp.c471
1 files changed, 320 insertions, 151 deletions
diff --git a/src/ann_mlp.c b/src/ann_mlp.c
index 46bdfb0..2cc7b01 100755
--- a/src/ann_mlp.c
+++ b/src/ann_mlp.c
@@ -5,6 +5,12 @@
FANN is obviously needed for compilation
this software is licensed under the GNU General Public License
*/
+
+/*
+ hacked by Georg Holzmann for some additional methods, bug fixes, ...
+ 2005, grh@mur.at
+*/
+
#include <stdio.h>
#include <string.h>
#include "m_pd.h"
@@ -21,9 +27,6 @@
#define TRAIN 0
#define RUN 1
-#define MAXINPUT 1024
-#define MAXOUTPUT 256
-
static t_class *ann_mlp_class;
typedef struct _ann_mlp {
@@ -35,9 +38,47 @@ typedef struct _ann_mlp {
float desired_error;
unsigned int max_iterations;
unsigned int iterations_between_reports;
+ fann_type *input; // grh: storage for input
+ t_atom *output; // grh: storage for output (t_atom)
+ fann_type *out_float; // grh: storage for output (fann_type)
+ t_canvas *x_canvas;
t_outlet *l_out, *f_out;
} t_ann_mlp;
+// allocation
+static void ann_mlp_allocate_storage(t_ann_mlp *x)
+{
+ int i;
+
+ if(!x->ann)
+ return;
+
+ x->input = (fann_type *)getbytes(x->ann->num_input*sizeof(fann_type));
+ x->output = (t_atom *)getbytes(x->ann->num_output*sizeof(t_atom));
+ x->out_float = (fann_type *)getbytes(x->ann->num_output*sizeof(fann_type));
+
+ // init storage with zeros
+ for (i=0; i<x->ann->num_input; i++)
+ x->input[i]=0;
+ for (i=0; i<x->ann->num_output; i++)
+ {
+ SETFLOAT(x->output+i, 0);
+ x->out_float[i]=0;
+ }
+}
+
+// deallocation
+static void ann_mlp_free(t_ann_mlp *x)
+{
+ if(!x->ann)
+ return;
+
+ freebytes(x->input, x->ann->num_input * sizeof(fann_type));
+ freebytes(x->output, x->ann->num_output * sizeof(t_atom));
+ freebytes(x->out_float, x->ann->num_output * sizeof(fann_type));
+ fann_destroy(x->ann);
+}
+
static void ann_mlp_help(t_ann_mlp *x)
{
post("");
@@ -55,59 +96,94 @@ static void ann_mlp_createFann(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *arg
unsigned int num_input = 2;
unsigned int num_output = 1;
unsigned int num_layers = 3;
- unsigned int num_neurons_hidden = 3;
+ unsigned int *neurons_per_layer = NULL;
+ int activated=0;
+ int i, count_args = 0;
float connection_rate = 1;
float learning_rate = (float)0.7;
-
- if (argc>0)
+
+
+ // okay, start parsing init args ...
+
+ if (argc > count_args++)
num_input = atom_getint(argv++);
- if (argc>1)
+ if (argc > count_args++)
num_output = atom_getint(argv++);
- if (argc>2)
- num_layers = atom_getint(argv++);
-
- if (argc>3)
- num_neurons_hidden = atom_getint(argv++);
-
- if (argc>4)
+ if (argc > count_args++)
+ {
+ int hidden=0;
+
+ num_layers = atom_getint(argv++);
+ hidden = num_layers-2;
+
+ neurons_per_layer = (unsigned int *)getbytes(num_layers*sizeof(unsigned int));
+
+ neurons_per_layer[0] = num_input;
+
+ // make standard initialization (if there are too few init args)
+ for (i=1; i<hidden+1; i++)
+ neurons_per_layer[i] = 3;
+
+ // now check init args
+ for (i=1; i<hidden+1; i++)
+ {
+ if (argc > count_args++)
+ neurons_per_layer[i] = atom_getint(argv++);
+ }
+
+ neurons_per_layer[num_layers-1] = num_output;
+
+ activated=1;
+ }
+
+ if (argc > count_args++)
connection_rate = atom_getfloat(argv++);
- if (argc>5)
+ if (argc > count_args++)
learning_rate = atom_getfloat(argv++);
- if (num_input>MAXINPUT)
- {
- error("too many inputs, maximum allowed is MAXINPUT");
- return;
- }
-
- if (num_output>MAXOUTPUT)
- {
- error("too many outputs, maximum allowed is MAXOUTPUT");
- return;
- }
-
- x->ann = fann_create(connection_rate, learning_rate, num_layers,
- num_input, num_neurons_hidden, num_output);
-
+ // make one hidden layer as standard, if there were too few init args
+ if(!activated)
+ {
+ neurons_per_layer = (unsigned int *)getbytes(3*sizeof(unsigned int));
+ neurons_per_layer[0] = num_input;
+ neurons_per_layer[1] = 3;
+ neurons_per_layer[2] = num_output;
+ }
+
+ // ... end of parsing init args
+
+
+ if(x->ann)
+ ann_mlp_free(x);
+
+ x->ann = fann_create_array(connection_rate, learning_rate, num_layers, neurons_per_layer);
+
+ // deallocate helper array
+ freebytes(neurons_per_layer, num_layers * sizeof(unsigned int));
+
+ if(!x->ann)
+ {
+ error("error creating the ann");
+ return;
+ }
+
+ ann_mlp_allocate_storage(x);
fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC);
-
- if (x->ann == 0)
- {
- error("error creating the ann");
- } else
- {
- post("created ann with:");
- post("num_input = %i", num_input);
- post("num_output = %i", num_output);
- post("num_layers = %i", num_layers);
- post("num_neurons_hidden = %i", num_neurons_hidden);
- post("connection_rate = %f", connection_rate);
- post("learning_rate = %f", learning_rate);
- }
+
+ // set error log to stdout, so that you see it in the pd console
+ //fann_set_error_log((struct fann_error*)x->ann, stdout);
+ // unfortunately this doesn't work ... but it should do in a similar way !!
+
+ post("created ann with:");
+ post("num_input = %i", num_input);
+ post("num_output = %i", num_output);
+ post("num_layers = %i", num_layers);
+ post("connection_rate = %f", connection_rate);
+ post("learning_rate = %f", learning_rate);
}
static void ann_mlp_print_status(t_ann_mlp *x)
@@ -149,26 +225,27 @@ static void ann_mlp_set_mode(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
}
}
-
-
-static void ann_mlp_train_on_file(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+static void ann_mlp_train_on_file(t_ann_mlp *x, t_symbol *s)
{
+ // make correct path
+ char patcher_path[MAXPDSTRING];
+ char filename[MAXPDSTRING];
+
if (x->ann == 0)
{
error("ann not initialized");
return;
}
- if (argc<1)
- {
- error("you must specify the filename with training data");
- return;
- } else
- {
- x->filenametrain = atom_gensym(argv);
- }
+ // make correct path
+ canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING);
+ sys_bashfilename(patcher_path, filename);
+ x->filenametrain = gensym(filename);
- //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name);
+ if(!x->filenametrain)
+ return;
+
+ post("nn: starting training on file %s, please be patient and wait ... (it could take severeal minutes to complete training)", x->filenametrain->s_name);
fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations,
x->iterations_between_reports, x->desired_error);
@@ -220,72 +297,47 @@ static void ann_mlp_set_iterations_between_reports(t_ann_mlp *x, t_symbol *sl, i
}
-
// run the ann using floats in list passed to the inlet as input values
// and send result to outlet as list of float
static void ann_mlp_run_the_net(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
- int i=0;
- fann_type input[MAXINPUT];
+ int i=0;
fann_type *calc_out;
- t_atom lista[MAXOUTPUT];
- int quanti;
- float valoreTMP;
if (x->ann == 0)
{
error("ann not initialized");
return;
}
-
- quanti = x->ann->num_output;
-
- // fill input array with zeros
- for (i=0; i<MAXINPUT; i++)
- {
- input[i]=0;
- }
-
- // fill output array with zeros
- for (i=0; i<MAXOUTPUT; i++)
- {
- SETFLOAT(lista + i,0);
- }
+
+ if(argc < x->ann->num_input)
+ {
+ error("ann_mlp: too few input values!!");
+ return;
+ }
// fill input array with actual data sent to inlet
- for (i=0;i<argc;i++)
+ for (i=0;i<x->ann->num_input;i++)
{
- input[i] = atom_getfloat(argv++);
+ x->input[i] = atom_getfloat(argv++);
}
// run the ann
- calc_out = fann_run(x->ann, input);
+ calc_out = fann_run(x->ann, x->input);
// fill the output array with result from ann
- for (i=0;i<quanti;i++)
- {
- valoreTMP = calc_out[i];
- //post("calc_out[%i]=%f", i, calc_out[i]);
- SETFLOAT(lista+i, valoreTMP);
- }
+ for (i=0;i<x->ann->num_output;i++)
+ SETFLOAT(x->output+i, calc_out[i]);
// send output array to outlet
- outlet_anything(x->l_out,
- gensym("list") ,
- quanti,
- lista);
-
+ outlet_anything(x->l_out, gensym("list"),
+ x->ann->num_output, x->output);
}
static void ann_mlp_train_on_the_fly(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
{
int i=0;
- fann_type input[MAXINPUT];
- fann_type output[MAXOUTPUT];
- //fann_type *calcMSE;
- //t_atom lista[MAXOUTPUT];
- int quantiINs;
- int quantiOUTs;
+ int quantiINs, quantiOUTs;
float mse;
if (x->ann == 0)
@@ -303,37 +355,20 @@ static void ann_mlp_train_on_the_fly(t_ann_mlp *x, t_symbol *sl, int argc, t_ato
return;
}
- // fill input array with zeros
- for (i=0; i<MAXINPUT; i++)
- {
- input[i]=0;
- }
- // fill input array with zeros
- for (i=0; i<MAXOUTPUT; i++)
- {
- output[i]=0;
- }
-
// fill input array with actual data sent to inlet
for (i=0;i<quantiINs;i++)
- {
- input[i] = atom_getfloat(argv++);
- }
+ x->input[i] = atom_getfloat(argv++);
for (i=0;i<quantiOUTs;i++)
- {
- output[i] = atom_getfloat(argv++);
- }
+ x->out_float[i] = atom_getfloat(argv++);
//fann_reset_MSE(x->ann);
- fann_train(x->ann, input, output);
+ fann_train(x->ann, x->input, x->out_float);
mse = fann_get_MSE(x->ann);
outlet_float(x->f_out, mse);
-
-
}
static void ann_mlp_manage_list(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
@@ -346,35 +381,57 @@ static void ann_mlp_manage_list(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *ar
}
}
-static void ann_mlp_set_filename(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+static void ann_mlp_set_filename(t_ann_mlp *x, t_symbol *s)
{
- if (argc>0) {
- x->filename = atom_gensym(argv);
- } else
- {
- error("you must specify the filename");
- }
- post("nn:filename set to %s", x->filename->s_name);
+ // make correct path
+ char patcher_path[MAXPDSTRING];
+ char filename[MAXPDSTRING];
+
+ if(!s)
+ return;
+
+ // make correct path
+ canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING);
+ sys_bashfilename(patcher_path, filename);
+ x->filename = gensym(filename);
}
-static void ann_mlp_load_ann_from_file(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+static void ann_mlp_load_ann_from_file(t_ann_mlp *x, t_symbol *s)
{
- if (argc>0) {
- x->filename = atom_gensym(argv);
- }
- x->ann = fann_create_from_file(x->filename->s_name);
- if (x->ann == 0)
- error("error opening %s", x->filename->s_name);
- else
- post("nn:ann loaded fom file %s", x->filename->s_name);
+ ann_mlp_set_filename(x,s);
+
+ if(!x->filename)
+ {
+ error("ann: no filename !!!");
+ return;
+ }
+
+ // deallocate storage
+ if(x->ann)
+ ann_mlp_free(x);
+
+ x->ann = fann_create_from_file(x->filename->s_name);
+
+ if (x->ann == 0)
+ error("error opening %s", x->filename->s_name);
+ else
+ post("nn:ann loaded fom file %s", x->filename->s_name);
+
+ // allocate storage
+ ann_mlp_allocate_storage(x);
}
-static void ann_mlp_save_ann_to_file(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+static void ann_mlp_save_ann_to_file(t_ann_mlp *x, t_symbol *s)
{
- if (argc>0) {
- x->filename = atom_gensym(argv);
- }
- if (x->ann == 0)
+ ann_mlp_set_filename(x,s);
+
+ if(!x->filename)
+ {
+ error("ann: no filename !!!");
+ return;
+ }
+
+ if (x->ann == 0)
{
error("ann is not initialized");
} else
@@ -466,6 +523,100 @@ static void ann_mlp_set_activation_function_output(t_ann_mlp *x, t_symbol *sl, i
}
+static void ann_mlp_set_activation_function_hidden(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ t_symbol *parametro = 0;
+ int funzione = 0;
+
+ if (x->ann == 0)
+ {
+ error("ann not initialized");
+ return;
+ }
+
+ if (argc>0) {
+ parametro = atom_gensym(argv);
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0)
+ funzione = FANN_THRESHOLD;
+ if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0)
+ funzione = FANN_THRESHOLD_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_LINEAR")==0)
+ funzione = FANN_LINEAR;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID")==0)
+ funzione = FANN_SIGMOID;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0)
+ funzione = FANN_SIGMOID_STEPWISE;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC;
+ if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0)
+ funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE;
+ fann_set_activation_function_hidden(x->ann, funzione);
+ } else
+ {
+ error("you must specify the activation function");
+ }
+ post("nn:activation function set to %s (%i)", parametro->s_name, funzione);
+
+}
+
+static void ann_mlp_randomize_weights(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv)
+{
+ t_float min = -1;
+ t_float max = 1;
+
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ if (argc>0)
+ min = atom_getfloat(argv++);
+
+ if (argc>1)
+ max = atom_getfloat(argv++);
+
+ fann_randomize_weights(x->ann, min, max);
+}
+
+static void ann_mlp_learnrate(t_ann_mlp *x, t_float f)
+{
+ int learnrate = 0;
+
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ learnrate = (f<0) ? 0 : f;
+ fann_set_learning_rate(x->ann, learnrate);
+}
+
+static void ann_mlp_set_activation_steepness_hidden(t_ann_mlp *x, t_float f)
+{
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ fann_set_activation_steepness_hidden(x->ann, f);
+}
+
+static void ann_mlp_set_activation_steepness_output(t_ann_mlp *x, t_float f)
+{
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ fann_set_activation_steepness_output(x->ann, f);
+}
+
+void fann_set_activation_steepness_hidden(struct fann * ann, fann_type steepness);
+
static void ann_mlp_print_ann_details(t_ann_mlp *x)
{
if (x->ann == 0)
@@ -491,6 +642,17 @@ static void ann_mlp_print_ann_details(t_ann_mlp *x)
}
}
+static void ann_mlp_print_ann_print(t_ann_mlp *x)
+{
+ if(!x->ann)
+ {
+ post("ann_mlp: ann is not initialized");
+ return;
+ }
+
+ fann_print_connections(x->ann);
+ fann_print_parameters(x->ann);
+}
static void *ann_mlp_new(t_symbol *s, int argc, t_atom *argv)
{
@@ -502,23 +664,22 @@ static void *ann_mlp_new(t_symbol *s, int argc, t_atom *argv)
x->max_iterations = 500000;
x->iterations_between_reports = 1000;
x->mode=RUN;
+ x->x_canvas = canvas_getcurrent();
+ x->filename = NULL;
+ x->filenametrain = NULL;
+ x->ann = NULL;
+ x->input = NULL;
+ x->output = NULL;
+ x->out_float = NULL;
if (argc>0) {
x->filename = atom_gensym(argv);
- ann_mlp_load_ann_from_file(x, NULL , 0, NULL);
+ ann_mlp_load_ann_from_file(x, NULL);
}
return (void *)x;
}
-// free resources
-static void ann_mlp_free(t_ann_mlp *x)
-{
- struct fann *ann = x->ann;
- fann_destroy(ann);
- // TODO: free other resources!
-}
-
void ann_mlp_setup(void) {
post("");
post("ann_mlp: multilayer perceptron for PD");
@@ -538,17 +699,19 @@ void ann_mlp_setup(void) {
class_addmethod(ann_mlp_class, (t_method)ann_mlp_train, gensym("train"), 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_run, gensym("run"), 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_mode, gensym("setmode"), A_GIMME, 0);
- class_addmethod(ann_mlp_class, (t_method)ann_mlp_train_on_file, gensym("train-on-file"), A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_train_on_file, gensym("train-on-file"), A_DEFSYMBOL, 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_manage_list, gensym("data"), A_GIMME, 0);
- class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_filename, gensym("filename"), A_GIMME, 0);
- class_addmethod(ann_mlp_class, (t_method)ann_mlp_load_ann_from_file, gensym("load"),A_GIMME, 0);
- class_addmethod(ann_mlp_class, (t_method)ann_mlp_save_ann_to_file, gensym("save"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_filename, gensym("filename"), A_DEFSYMBOL, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_load_ann_from_file, gensym("load"),A_DEFSYMBOL, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_save_ann_to_file, gensym("save"),A_DEFSYMBOL, 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_details, gensym("details"), 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_print, gensym("print"), 0);
// change training parameters
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_desired_error, gensym("desired_error"),A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_max_iterations, gensym("max_iterations"),A_GIMME, 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_learnrate, gensym("learnrate"), A_FLOAT, 0);
// change training and activation algorithms
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0);
@@ -556,7 +719,13 @@ void ann_mlp_setup(void) {
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0);
class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_hidden, gensym("set_activation_function_hidden"),A_GIMME, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_hidden, gensym("set_activation_steepness_hidden"), A_FLOAT, 0);
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_output, gensym("set_activation_steepness_output"), A_FLOAT, 0);
+ // initialization:
+ class_addmethod(ann_mlp_class, (t_method)ann_mlp_randomize_weights, gensym("randomize_weights"),A_GIMME, 0);
+
// the most important one: running the ann
class_addlist(ann_mlp_class, (t_method)ann_mlp_manage_list);