From a9161f30b6950dde3f801e13ab9678cb0a7f4bed Mon Sep 17 00:00:00 2001 From: Hans-Christoph Steiner Date: Fri, 29 Dec 2006 17:39:56 +0000 Subject: changed to follow help file standard svn path=/trunk/externals/ann/; revision=7100 --- helps/help-ann_td.pd | 237 --------------------------------------------------- 1 file changed, 237 deletions(-) delete mode 100755 helps/help-ann_td.pd (limited to 'helps/help-ann_td.pd') diff --git a/helps/help-ann_td.pd b/helps/help-ann_td.pd deleted file mode 100755 index 997e19e..0000000 --- a/helps/help-ann_td.pd +++ /dev/null @@ -1,237 +0,0 @@ -#N canvas 117 9 858 468 12; -#N canvas 445 134 647 348 creation 0; -#X obj 52 235 outlet; -#X text 246 38 specifying all; -#X text 159 216 TIP:don't set the layers param too high; -#X msg 49 10 create 2 1 5; -#X text 175 6 create with 2 inputs \, 1 output and 5 frames; -#X msg 59 38 create 2 1 5 3 3 1 0.7; -#X text 159 179 params: num_input \, num_output \, frames \, num_layers -\, num_neurons_hidden \, connection_rate \, learning_rate; -#N canvas 218 152 650 413 what 0; -#X text 37 134 you pass [0 0.1] to ann_tdnn; -#X text 34 152 internally now there is this array: [0 0.1 0 0 0 0] -; -#X text 38 196 next input is [0.2 1]; -#X text 36 211 internally now there is this array: [0.2 1 0 0.1 0 0] -; -#X text 37 255 next input is [0.3 0.4]; -#X text 35 270 internally now there is this array: [0.3 0.4 0.2 1 0 -0.1]; -#X text 36 317 next input is [0.7 0]; -#X text 34 332 internally now there is this array: [0.7 0 0.3 0.4 0.2 -1]; -#X text 35 168 a normal ann_mlp is run with this inputs; -#X text 38 225 a normal ann_mlp is run with this inputs; -#X text 33 284 a normal ann_mlp is run with this inputs; -#X text 33 347 a normal ann_mlp is run with this inputs; -#X text 12 139 1); -#X text 14 197 2); -#X text 15 258 3); -#X text 13 319 4); -#X text 33 4 this implementation od tdnn is simply a normal ann_mlp -with num_input*frame inputs and num_output outputs. ann_tdnn simply -helps managing the delay \, frames and buffers.; -#X text 65 385 ...and so on...; -#X text 34 64 frames can be seen as the delay feedback: how many times -an input is internally held in the input array; -#X text 35 104 eg: 2 inputs 3 frames = internally 6 inputs; -#X restore 155 109 pd what frames are?; -#X connect 3 0 0 0; -#X connect 5 0 0 0; -#X restore 93 68 pd creation examples; -#N canvas 136 60 728 356 run 0; -#X obj 90 219 outlet; -#X msg 123 69 0 1; -#X msg 124 92 1 0; -#X msg 125 115 1 1; -#X msg 126 140 0 0; -#X text 40 17 now you can run your nn passing it a list with inputs -; -#X text 169 70 send a list of data and watch the console for output -; -#X text 39 35 the output is sent as a list of float; -#X text 184 134 these inputs are good for a nn like the one in example1 -directory; -#X connect 1 0 0 0; -#X connect 2 0 0 0; -#X connect 3 0 0 0; -#X connect 4 0 0 0; -#X restore 107 180 pd run the net; -#N canvas 0 0 619 610 other 0; -#X obj 43 401 outlet; -#X msg 102 37 train; -#X msg 103 63 run; -#X msg 152 37 setmode 0; -#X msg 153 63 setmode 1; -#X text 249 40 set training/running mode; -#X text 247 63 training mode currently not implemented; -#N canvas 265 255 690 335 training 0; -#X obj 71 288 outlet; -#X msg 82 195 FANN_TRAIN_INCREMENTAL; -#X msg 82 216 FANN_TRAIN_BATCH; -#X msg 81 238 FANN_TRAIN_RPROP; -#X msg 81 258 FANN_TRAIN_QUICKPROP; -#X text 40 28 you can set the training algorithm simply sending a message -with the name of the algorithm chosen. possible values are: FANN_TRAIN_INCREMENTAL -FANN_TRAIN_BATCH FANN_TRAIN_RPROP FANN_TRAIN_QUICKPROP the default -is: FANN_TRAIN_RPROP see the FANN manual for details on each algorithm: -http://fann.sourceforge.net/html/r1996.html; -#X connect 1 0 0 0; -#X connect 2 0 0 0; -#X connect 3 0 0 0; -#X connect 4 0 0 0; -#X restore 150 153 pd training algorithm; -#X text 360 175 some advanced param; -#N canvas 371 92 698 395 training 0; -#X obj 52 230 outlet; -#X msg 69 118 desired_error 0.01; -#X msg 79 146 max_iterations 500000; -#X msg 90 178 iterations_between_reports 1000; -#X text 58 28 you can change training parameters. see FANN manual for -details (http://fann.sourceforge.net); -#X connect 1 0 0 0; -#X connect 2 0 0 0; -#X connect 3 0 0 0; -#X restore 151 179 pd training params; -#N canvas 371 92 694 391 activation 0; -#X obj 49 335 outlet; -#X text 40 28 you can set ti output activation algorithm passing a -message to nn. see the FANN manual for description of the algorithms -; -#X msg 69 118 set_activation_function_output FANN_THRESHOLD; -#X msg 83 139 set_activation_function_output FANN_THRESHOLD_SYMMETRIC -; -#X msg 95 163 set_activation_function_output FANN_LINEAR; -#X msg 98 184 set_activation_function_output FANN_SIGMOID; -#X msg 106 206 set_activation_function_output FANN_SIGMOID_STEPWISE -; -#X msg 108 233 set_activation_function_output FANN_SIGMOID_SYMMETRIC -; -#X msg 115 256 set_activation_function_output FANN_SIGMOID_SYMMETRIC_STEPWISE -; -#X connect 2 0 0 0; -#X connect 3 0 0 0; -#X connect 4 0 0 0; -#X connect 5 0 0 0; -#X connect 6 0 0 0; -#X connect 7 0 0 0; -#X connect 8 0 0 0; -#X restore 150 203 pd activation algorithm; -#X msg 151 287 details; -#X text 229 285 details on the current nn; -#X msg 145 333 help; -#X connect 1 0 0 0; -#X connect 2 0 0 0; -#X connect 3 0 0 0; -#X connect 4 0 0 0; -#X connect 7 0 0 0; -#X connect 9 0 0 0; -#X connect 10 0 0 0; -#X connect 11 0 0 0; -#X connect 13 0 0 0; -#X restore 128 258 pd other commands; -#N canvas 0 0 665 525 save 0; -#X obj 39 264 outlet; -#X msg 64 20 filename test.net; -#X msg 66 46 save; -#X msg 82 103 load; -#X text 221 19 set the filename; -#X text 214 42 save the net to the file; -#X text 138 104 you can reload it too; -#X text 144 182 nn can be loaded from a file at creation time simply -passing the filename as argument; -#X msg 68 71 save test.net; -#X msg 93 130 load test.net; -#X text 144 217 like [ann_td num_inputs frames filename]; -#X connect 1 0 0 0; -#X connect 2 0 0 0; -#X connect 3 0 0 0; -#X connect 8 0 0 0; -#X connect 9 0 0 0; -#X restore 118 218 pd save the net; -#X text 270 66 create a nn; -#X text 244 179 run your net; -#X text 258 215 save your net; -#N canvas 0 0 712 542 tips 0; -#X text 51 84 for better performances inputs value should be normalized -\, all input should have the same range (if one input has a larger -range it will be more "important"). the range of each input should -be 0 centered. so [-1 \, 1] is good [-2 \, 2] is good \, [0 \, 1] not -so good [1 \, 2] is bad. the range sould not be too small ([-0.1 \, -0.1] is bad).; -#X text 41 19 TIPS; -#X text 41 56 inputs; -#X text 39 211 outputs; -#X text 50 235 each class of outputs should have its own output value: -don't use the same output for 2 meanings \, use 2 outputs intead \, -1 for each.; -#X restore 167 285 pd tips; -#X text 272 371 an interface to fann classes (http://fann.sourceforge.net) -; -#X text 274 389 by Davide Morelli - info@davidemorelli.it; -#N canvas 227 183 580 411 train 0; -#X obj 32 241 outlet; -#N canvas 100 44 892 558 train 0; -#X obj 57 397 outlet; -#X msg 60 31 train; -#X text 126 33 1- set the train mode; -#X text 116 81 2- build a list with inputs and desired output; -#X text 139 101 be shure you provide the correct numbers of inputs -and outputs; -#X obj 168 202 pack s f f f; -#X obj 197 248 pack f f f; -#X obj 168 225 unpack s f f f; -#X msg 192 374 run; -#X obj 198 170 tgl 15 0 empty empty in1 0 -6 0 8 -262144 -1 -1 0 1 -; -#X obj 228 170 tgl 15 0 empty empty in2 0 -6 0 8 -262144 -1 -1 0 1 -; -#X obj 259 170 tgl 15 0 empty empty output 0 -6 0 8 -262144 -1 -1 0 -1; -#X obj 148 169 bng 15 250 50 0 empty empty train! 0 -6 0 8 -262144 --1 -1; -#X text 299 183 set inputs and output value \, then send the list clicking -on the "train!" bang; -#X text 229 374 3- when you are ready switch again to run mode before -exiting; -#X text 311 308 NOTE2: while training the right outlet gives you the -mean square error after each training pattern.; -#X msg 316 278 create 2 1 5; -#X text 315 226 NOTE1: before training with this example you should -have created a nn with 2 ins and 1 out and 5 frames with a command -like:; -#X connect 1 0 0 0; -#X connect 5 0 7 0; -#X connect 6 0 0 0; -#X connect 7 1 6 0; -#X connect 7 2 6 1; -#X connect 7 3 6 2; -#X connect 8 0 0 0; -#X connect 9 0 5 1; -#X connect 10 0 5 2; -#X connect 11 0 5 3; -#X connect 12 0 5 0; -#X connect 16 0 0 0; -#X restore 68 50 pd train it on the fly; -#X text 62 5 there are 2 ways to train your net; -#X text 253 47 on the fly is simpler; -#X text 86 128 with a trainfile the net could be more accurate; -#X msg 89 149 train-on-file test.txt; -#X connect 1 0 0 0; -#X connect 5 0 0 0; -#X restore 115 119 pd train; -#X text 190 118 train a nn; -#X obj 113 360 print mse; -#X obj 54 391 print out; -#X text 150 315 2 args needed: num_inputs and frames; -#X text 148 331 see [pd creation examples] for details; -#X obj 33 319 ann_td 2 5; -#X text 9 2 ann_td: time delay neural networks in pd; -#X connect 0 0 16 0; -#X connect 1 0 16 0; -#X connect 2 0 16 0; -#X connect 3 0 16 0; -#X connect 10 0 16 0; -#X connect 16 0 13 0; -#X connect 16 1 12 0; -- cgit v1.2.1