From e677d121a496725d4c9f0bdbb5d2fa5e20444d49 Mon Sep 17 00:00:00 2001 From: Davide Morelli Date: Wed, 31 Oct 2007 10:24:27 +0000 Subject: added note on fann version to be used svn path=/trunk/externals/ann/; revision=8913 --- src/ann_mlp.c | 1503 +++++++++++++++++++++++++++++---------------------------- src/ann_td.c | 1325 +++++++++++++++++++++++++------------------------- 2 files changed, 1415 insertions(+), 1413 deletions(-) (limited to 'src') diff --git a/src/ann_mlp.c b/src/ann_mlp.c index 096b21a..53f61da 100755 --- a/src/ann_mlp.c +++ b/src/ann_mlp.c @@ -1,751 +1,752 @@ -/* nn : Neural Networks for PD - by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it - this software is simply an interface for FANN classes - http://fann.sourceforge.net/ - FANN is obviously needed for compilation - this software is licensed under the GNU General Public License -*/ - -/* - hacked by Georg Holzmann for some additional methods, bug fixes, ... - 2005, grh@mur.at -*/ - -#include -#include -#include "m_pd.h" -#include "fann.h" - -#ifndef VERSION -#define VERSION "0.2" -#endif - -#ifndef __DATE__ -#define __DATE__ "" -#endif - -#define TRAIN 0 -#define RUN 1 - -static t_class *ann_mlp_class; - -typedef struct _ann_mlp { - t_object x_obj; - struct fann *ann; - int mode; // 0 = training, 1 = running - t_symbol *filename; // name of the file where this ann is saved - t_symbol *filenametrain; // name of the file with training data - float desired_error; - unsigned int max_iterations; - unsigned int iterations_between_reports; - fann_type *input; // grh: storage for input - t_atom *output; // grh: storage for output (t_atom) - fann_type *out_float; // grh: storage for output (fann_type) - t_canvas *x_canvas; - t_outlet *l_out, *f_out; -} t_ann_mlp; - -// allocation -static void ann_mlp_allocate_storage(t_ann_mlp *x) -{ - unsigned int i; - - if(!x->ann) - return; - - x->input = (fann_type *)getbytes(x->ann->num_input*sizeof(fann_type)); - x->output = (t_atom *)getbytes(x->ann->num_output*sizeof(t_atom)); - x->out_float = (fann_type *)getbytes(x->ann->num_output*sizeof(fann_type)); - - // init storage with zeros - for (i=0; iann->num_input; i++) - x->input[i]=0; - for (i=0; iann->num_output; i++) - { - SETFLOAT(x->output+i, 0); - x->out_float[i]=0; - } -} - -// deallocation -static void ann_mlp_free(t_ann_mlp *x) -{ - if(!x->ann) - return; - - freebytes(x->input, x->ann->num_input * sizeof(fann_type)); - freebytes(x->output, x->ann->num_output * sizeof(t_atom)); - freebytes(x->out_float, x->ann->num_output * sizeof(fann_type)); - fann_destroy(x->ann); -} - -static void ann_mlp_help(t_ann_mlp *x) -{ - post(""); - post("ann_mlp: neural nets for PD"); - post("ann_mlp:Davide Morelli - info@davidemorelli.it - (c)2005"); - post("ann_mlp:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output"); - post("ann_mlp:main commands: create, filename, load, save, train-on-file, run"); - post("ann_mlp:see help-nn.pd for details on commands and usage"); - post("ann_mlp:this is an interface to FANN"); - -} - -static void ann_mlp_createFann(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int num_input = 2; - unsigned int num_output = 1; - unsigned int num_layers = 3; - unsigned int *neurons_per_layer = NULL; - int activated=0; - int i, count_args = 0; - float connection_rate = 1; - float learning_rate = (float)0.7; - - - // okay, start parsing init args ... - - if (argc > count_args++) - num_input = atom_getint(argv++); - - if (argc > count_args++) - num_output = atom_getint(argv++); - - if (argc > count_args++) - { - int hidden=0; - - num_layers = atom_getint(argv++); - hidden = num_layers-2; - - neurons_per_layer = (unsigned int *)getbytes(num_layers*sizeof(unsigned int)); - - neurons_per_layer[0] = num_input; - - // make standard initialization (if there are too few init args) - for (i=1; i count_args++) - neurons_per_layer[i] = atom_getint(argv++); - } - - neurons_per_layer[num_layers-1] = num_output; - - activated=1; - } - - if (argc > count_args++) - connection_rate = atom_getfloat(argv++); - - if (argc > count_args++) - learning_rate = atom_getfloat(argv++); - - // make one hidden layer as standard, if there were too few init args - if(!activated) - { - neurons_per_layer = (unsigned int *)getbytes(3*sizeof(unsigned int)); - neurons_per_layer[0] = num_input; - neurons_per_layer[1] = 3; - neurons_per_layer[2] = num_output; - } - - // ... end of parsing init args - - - if(x->ann) - ann_mlp_free(x); - - x->ann = fann_create_array(connection_rate, learning_rate, num_layers, neurons_per_layer); - - // deallocate helper array - freebytes(neurons_per_layer, num_layers * sizeof(unsigned int)); - - if(!x->ann) - { - error("error creating the ann"); - return; - } - - ann_mlp_allocate_storage(x); - fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC); - fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC); - - // set error log to stdout, so that you see it in the pd console - //fann_set_error_log((struct fann_error*)x->ann, stdout); - // unfortunately this doesn't work ... but it should do in a similar way !! - - post("created ann with:"); - post("num_input = %i", num_input); - post("num_output = %i", num_output); - post("num_layers = %i", num_layers); - post("connection_rate = %f", connection_rate); - post("learning_rate = %f", learning_rate); -} - -static void ann_mlp_print_status(t_ann_mlp *x) -{ - if (x->mode == TRAIN) - post("nn:training"); - else - post("nn:running"); -} - -static void ann_mlp_train(t_ann_mlp *x) -{ - x->mode=TRAIN; - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - fann_reset_MSE(x->ann); - ann_mlp_print_status(x); -} - -static void ann_mlp_run(t_ann_mlp *x) -{ - x->mode=RUN; - ann_mlp_print_status(x); -} - -static void ann_mlp_set_mode(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc<1) - { - error("usage: setmode 0/1: 0 for training, 1 for running"); - } - else - { - x->mode = atom_getint(argv++); - ann_mlp_print_status(x); - } -} - -static void ann_mlp_train_on_file(t_ann_mlp *x, t_symbol *s) -{ - // make correct path - char patcher_path[MAXPDSTRING]; - char filename[MAXPDSTRING]; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - // make correct path - canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING); - sys_bashfilename(patcher_path, filename); - x->filenametrain = gensym(filename); - - if(!x->filenametrain) - return; - - post("nn: starting training on file %s, please be patient and wait ... (it could take severeal minutes to complete training)", x->filenametrain->s_name); - - fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations, - x->iterations_between_reports, x->desired_error); - - post("ann_mlp: finished training on file %s", x->filenametrain->s_name); -} - -static void ann_mlp_set_desired_error(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - float desired_error = (float)0.001; - if (0desired_error = desired_error; - post("nn:desired_error set to %f", x->desired_error); - } else - { - error("you must pass me a float"); - } -} - -static void ann_mlp_set_max_iterations(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int max_iterations = 500000; - if (argc>0) - { - max_iterations = atom_getint(argv); - x->max_iterations = max_iterations; - post("nn:max_iterations set to %i", x->max_iterations); - } else - { - error("you must pass me an int"); - } -} - -static void ann_mlp_set_iterations_between_reports(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - - unsigned int iterations_between_reports = 1000; - if (argc>0) - { - iterations_between_reports = atom_getint(argv); - x->iterations_between_reports = iterations_between_reports; - post("nn:iterations_between_reports set to %i", x->iterations_between_reports); - } else - { - error("you must pass me an int"); - } - -} - -// run the ann using floats in list passed to the inlet as input values -// and send result to outlet as list of float -static void ann_mlp_run_the_net(t_ann_mlp *x, t_symbol *sl, unsigned int argc, t_atom *argv) -{ - unsigned int i=0; - fann_type *calc_out; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if(argc < x->ann->num_input) - { - error("ann_mlp: too few input values!!"); - return; - } - - // fill input array with actual data sent to inlet - for (i=0;iann->num_input;i++) - { - x->input[i] = atom_getfloat(argv++); - } - - // run the ann - calc_out = fann_run(x->ann, x->input); - - // fill the output array with result from ann - for (i=0;iann->num_output;i++) - SETFLOAT(x->output+i, calc_out[i]); - - // send output array to outlet - outlet_anything(x->l_out, gensym("list"), - x->ann->num_output, x->output); -} - -static void ann_mlp_train_on_the_fly(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - int i=0; - int quantiINs, quantiOUTs; - float mse; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - quantiINs = x->ann->num_input; - quantiOUTs = x->ann->num_output; - - if ((quantiINs + quantiOUTs)>argc) - { - error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats"); - return; - } - - // fill input array with actual data sent to inlet - for (i=0;iinput[i] = atom_getfloat(argv++); - - for (i=0;iout_float[i] = atom_getfloat(argv++); - - //fann_reset_MSE(x->ann); - - fann_train(x->ann, x->input, x->out_float); - - mse = fann_get_MSE(x->ann); - - outlet_float(x->f_out, mse); -} - -static void ann_mlp_manage_list(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->mode) - ann_mlp_run_the_net(x, sl, argc, argv); - else - { - ann_mlp_train_on_the_fly(x, sl, argc, argv); - } -} - -static void ann_mlp_set_filename(t_ann_mlp *x, t_symbol *s) -{ - // make correct path - char patcher_path[MAXPDSTRING]; - char filename[MAXPDSTRING]; - - if(!s) - return; - - // make correct path - canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING); - sys_bashfilename(patcher_path, filename); - x->filename = gensym(filename); -} - -static void ann_mlp_load_ann_from_file(t_ann_mlp *x, t_symbol *s) -{ - ann_mlp_set_filename(x,s); - - if(!x->filename) - { - error("ann: no filename !!!"); - return; - } - - // deallocate storage - if(x->ann) - ann_mlp_free(x); - - x->ann = fann_create_from_file(x->filename->s_name); - - if (x->ann == 0) - error("error opening %s", x->filename->s_name); - else - post("nn:ann loaded fom file %s", x->filename->s_name); - - // allocate storage - ann_mlp_allocate_storage(x); -} - -static void ann_mlp_save_ann_to_file(t_ann_mlp *x, t_symbol *s) -{ - ann_mlp_set_filename(x,s); - - if(!x->filename) - { - error("ann: no filename !!!"); - return; - } - - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_save(x->ann, x->filename->s_name); - post("nn:ann saved in file %s", x->filename->s_name); - } -} - -// functions for training algo: -static void ann_mlp_set_FANN_TRAIN_INCREMENTAL(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL); - post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL"); - } -} -static void ann_mlp_set_FANN_TRAIN_BATCH(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH); - post("nn:training algorithm set to FANN_TRAIN_BATCH"); - } -} -static void ann_mlp_set_FANN_TRAIN_RPROP(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP); - post("nn:training algorithm set to FANN_TRAIN_RPROP"); - } -} -static void ann_mlp_set_FANN_TRAIN_QUICKPROP(t_ann_mlp *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP); - post("nn:training algorithm set to FANN_TRAIN_QUICKPROP"); - } -} - -static void ann_mlp_set_activation_function_output(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_symbol *parametro = 0; - int funzione = 0; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc>0) { - parametro = atom_gensym(argv); - if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) - funzione = FANN_THRESHOLD; - if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) - funzione = FANN_THRESHOLD_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_LINEAR")==0) - funzione = FANN_LINEAR; - if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) - funzione = FANN_SIGMOID; - if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) - funzione = FANN_SIGMOID_STEPWISE; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) - funzione = FANN_SIGMOID_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) - funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0) - funzione = FANN_GAUSSIAN; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0) - funzione = FANN_GAUSSIAN_STEPWISE; - if (strcmp(parametro->s_name, "FANN_ELLIOT")==0) - funzione = FANN_ELLIOT; - if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0) - funzione = FANN_ELLIOT_SYMMETRIC; - - fann_set_activation_function_output(x->ann, funzione); - } else - { - error("you must specify the activation function"); - } - post("nn:activation function set to %s (%i)", parametro->s_name, funzione); - -} - -static void ann_mlp_set_activation_function_hidden(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_symbol *parametro = 0; - int funzione = 0; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc>0) { - parametro = atom_gensym(argv); - if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) - funzione = FANN_THRESHOLD; - if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) - funzione = FANN_THRESHOLD_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_LINEAR")==0) - funzione = FANN_LINEAR; - if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) - funzione = FANN_SIGMOID; - if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) - funzione = FANN_SIGMOID_STEPWISE; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) - funzione = FANN_SIGMOID_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) - funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0) - funzione = FANN_GAUSSIAN; - if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0) - funzione = FANN_GAUSSIAN_STEPWISE; - if (strcmp(parametro->s_name, "FANN_ELLIOT")==0) - funzione = FANN_ELLIOT; - if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0) - funzione = FANN_ELLIOT_SYMMETRIC; - - fann_set_activation_function_hidden(x->ann, funzione); - } else - { - error("you must specify the activation function"); - } - post("nn:activation function set to %s (%i)", parametro->s_name, funzione); - -} - -static void ann_mlp_randomize_weights(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_float min = -1; - t_float max = 1; - - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - if (argc>0) - min = atom_getfloat(argv++); - - if (argc>1) - max = atom_getfloat(argv++); - - fann_randomize_weights(x->ann, min, max); -} - -static void ann_mlp_learnrate(t_ann_mlp *x, t_float f) -{ - int learnrate = 0; - - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - learnrate = (f<0) ? 0 : f; - fann_set_learning_rate(x->ann, learnrate); -} - -static void ann_mlp_set_activation_steepness_hidden(t_ann_mlp *x, t_float f) -{ - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - fann_set_activation_steepness_hidden(x->ann, f); -} - -static void ann_mlp_set_activation_steepness_output(t_ann_mlp *x, t_float f) -{ - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - fann_set_activation_steepness_output(x->ann, f); -} - -void fann_set_activation_steepness_hidden(struct fann * ann, fann_type steepness); - -static void ann_mlp_print_ann_details(t_ann_mlp *x) -{ - if (x->ann == 0) - { - post("ann_mlp:ann is not initialized"); - } else - { - post("follows a description of the current ann:"); - post("num_input=%i", x->ann->num_input); - post("num_output=%i", x->ann->num_output); - post("learning_rate=%f", x->ann->learning_rate); - post("connection_rate=%f", x->ann->connection_rate); - post("total_neurons=%i", x->ann->total_neurons); - post("total_connections=%i", x->ann->total_connections); - post("last error=%i", x->ann->errstr); - if (x->filename == 0) - { - post("ann_mlp:filename not set"); - } else - { - post("filename=%s", x->filename->s_name); - } - } -} - -static void ann_mlp_print_ann_print(t_ann_mlp *x) -{ - if(!x->ann) - { - post("ann_mlp: ann is not initialized"); - return; - } - - fann_print_connections(x->ann); - fann_print_parameters(x->ann); -} - -static void *ann_mlp_new(t_symbol *s, int argc, t_atom *argv) -{ - t_ann_mlp *x = (t_ann_mlp *)pd_new(ann_mlp_class); - x->l_out = outlet_new(&x->x_obj, &s_list); - x->f_out = outlet_new(&x->x_obj, &s_float); - - x->desired_error = (float)0.001; - x->max_iterations = 500000; - x->iterations_between_reports = 1000; - x->mode=RUN; - x->x_canvas = canvas_getcurrent(); - x->filename = NULL; - x->filenametrain = NULL; - x->ann = NULL; - x->input = NULL; - x->output = NULL; - x->out_float = NULL; - - if (argc>0) { - x->filename = atom_gensym(argv); - ann_mlp_load_ann_from_file(x, NULL); - } - - return (void *)x; -} - -void ann_mlp_setup(void) { - post(""); - post("ann_mlp: multilayer perceptron for PD"); - post("version: "VERSION""); - post("compiled: "__DATE__); - post("author: Davide Morelli"); - post("contact: info@davidemorelli.it www.davidemorelli.it"); - - ann_mlp_class = class_new(gensym("ann_mlp"), - (t_newmethod)ann_mlp_new, - (t_method)ann_mlp_free, sizeof(t_ann_mlp), - CLASS_DEFAULT, A_GIMME, 0); - - // general.. - class_addmethod(ann_mlp_class, (t_method)ann_mlp_help, gensym("help"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_createFann, gensym("create"), A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_train, gensym("train"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_run, gensym("run"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_mode, gensym("setmode"), A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_train_on_file, gensym("train-on-file"), A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_manage_list, gensym("data"), A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_filename, gensym("filename"), A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_load_ann_from_file, gensym("load"),A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_save_ann_to_file, gensym("save"),A_DEFSYMBOL, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_details, gensym("details"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_print, gensym("print"), 0); - - // change training parameters - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_desired_error, gensym("desired_error"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_max_iterations, gensym("max_iterations"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_learnrate, gensym("learnrate"), A_FLOAT, 0); - - // change training and activation algorithms - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_hidden, gensym("set_activation_function_hidden"),A_GIMME, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_hidden, gensym("set_activation_steepness_hidden"), A_FLOAT, 0); - class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_output, gensym("set_activation_steepness_output"), A_FLOAT, 0); - - // initialization: - class_addmethod(ann_mlp_class, (t_method)ann_mlp_randomize_weights, gensym("randomize_weights"),A_GIMME, 0); - - // the most important one: running the ann - class_addlist(ann_mlp_class, (t_method)ann_mlp_manage_list); - - -} +/* ann_mlp : Neural Networks for PD + by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it + this software is simply an interface for FANN classes + http://fann.sourceforge.net/ + FANN is obviously needed for compilation + USE 1.2 VERSION ONLY + this software is licensed under the GNU General Public License +*/ + +/* + hacked by Georg Holzmann for some additional methods, bug fixes, ... + 2005, grh@mur.at +*/ + +#include +#include +#include "m_pd.h" +#include "fann.h" + +#ifndef VERSION +#define VERSION "0.2" +#endif + +#ifndef __DATE__ +#define __DATE__ "" +#endif + +#define TRAIN 0 +#define RUN 1 + +static t_class *ann_mlp_class; + +typedef struct _ann_mlp { + t_object x_obj; + struct fann *ann; + int mode; // 0 = training, 1 = running + t_symbol *filename; // name of the file where this ann is saved + t_symbol *filenametrain; // name of the file with training data + float desired_error; + unsigned int max_iterations; + unsigned int iterations_between_reports; + fann_type *input; // grh: storage for input + t_atom *output; // grh: storage for output (t_atom) + fann_type *out_float; // grh: storage for output (fann_type) + t_canvas *x_canvas; + t_outlet *l_out, *f_out; +} t_ann_mlp; + +// allocation +static void ann_mlp_allocate_storage(t_ann_mlp *x) +{ + unsigned int i; + + if(!x->ann) + return; + + x->input = (fann_type *)getbytes(x->ann->num_input*sizeof(fann_type)); + x->output = (t_atom *)getbytes(x->ann->num_output*sizeof(t_atom)); + x->out_float = (fann_type *)getbytes(x->ann->num_output*sizeof(fann_type)); + + // init storage with zeros + for (i=0; iann->num_input; i++) + x->input[i]=0; + for (i=0; iann->num_output; i++) + { + SETFLOAT(x->output+i, 0); + x->out_float[i]=0; + } +} + +// deallocation +static void ann_mlp_free(t_ann_mlp *x) +{ + if(!x->ann) + return; + + freebytes(x->input, x->ann->num_input * sizeof(fann_type)); + freebytes(x->output, x->ann->num_output * sizeof(t_atom)); + freebytes(x->out_float, x->ann->num_output * sizeof(fann_type)); + fann_destroy(x->ann); +} + +static void ann_mlp_help(t_ann_mlp *x) +{ + post(""); + post("ann_mlp: neural nets for PD"); + post("ann_mlp:Davide Morelli - info@davidemorelli.it - (c)2005"); + post("ann_mlp:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output"); + post("ann_mlp:main commands: create, filename, load, save, train-on-file, run"); + post("ann_mlp:see help-nn.pd for details on commands and usage"); + post("ann_mlp:this is an interface to FANN"); + +} + +static void ann_mlp_createFann(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + unsigned int num_input = 2; + unsigned int num_output = 1; + unsigned int num_layers = 3; + unsigned int *neurons_per_layer = NULL; + int activated=0; + int i, count_args = 0; + float connection_rate = 1; + float learning_rate = (float)0.7; + + + // okay, start parsing init args ... + + if (argc > count_args++) + num_input = atom_getint(argv++); + + if (argc > count_args++) + num_output = atom_getint(argv++); + + if (argc > count_args++) + { + int hidden=0; + + num_layers = atom_getint(argv++); + hidden = num_layers-2; + + neurons_per_layer = (unsigned int *)getbytes(num_layers*sizeof(unsigned int)); + + neurons_per_layer[0] = num_input; + + // make standard initialization (if there are too few init args) + for (i=1; i count_args++) + neurons_per_layer[i] = atom_getint(argv++); + } + + neurons_per_layer[num_layers-1] = num_output; + + activated=1; + } + + if (argc > count_args++) + connection_rate = atom_getfloat(argv++); + + if (argc > count_args++) + learning_rate = atom_getfloat(argv++); + + // make one hidden layer as standard, if there were too few init args + if(!activated) + { + neurons_per_layer = (unsigned int *)getbytes(3*sizeof(unsigned int)); + neurons_per_layer[0] = num_input; + neurons_per_layer[1] = 3; + neurons_per_layer[2] = num_output; + } + + // ... end of parsing init args + + + if(x->ann) + ann_mlp_free(x); + + x->ann = fann_create_array(connection_rate, learning_rate, num_layers, neurons_per_layer); + + // deallocate helper array + freebytes(neurons_per_layer, num_layers * sizeof(unsigned int)); + + if(!x->ann) + { + error("error creating the ann"); + return; + } + + ann_mlp_allocate_storage(x); + fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC); + fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC); + + // set error log to stdout, so that you see it in the pd console + //fann_set_error_log((struct fann_error*)x->ann, stdout); + // unfortunately this doesn't work ... but it should do in a similar way !! + + post("created ann with:"); + post("num_input = %i", num_input); + post("num_output = %i", num_output); + post("num_layers = %i", num_layers); + post("connection_rate = %f", connection_rate); + post("learning_rate = %f", learning_rate); +} + +static void ann_mlp_print_status(t_ann_mlp *x) +{ + if (x->mode == TRAIN) + post("nn:training"); + else + post("nn:running"); +} + +static void ann_mlp_train(t_ann_mlp *x) +{ + x->mode=TRAIN; + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + fann_reset_MSE(x->ann); + ann_mlp_print_status(x); +} + +static void ann_mlp_run(t_ann_mlp *x) +{ + x->mode=RUN; + ann_mlp_print_status(x); +} + +static void ann_mlp_set_mode(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (argc<1) + { + error("usage: setmode 0/1: 0 for training, 1 for running"); + } + else + { + x->mode = atom_getint(argv++); + ann_mlp_print_status(x); + } +} + +static void ann_mlp_train_on_file(t_ann_mlp *x, t_symbol *s) +{ + // make correct path + char patcher_path[MAXPDSTRING]; + char filename[MAXPDSTRING]; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + // make correct path + canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING); + sys_bashfilename(patcher_path, filename); + x->filenametrain = gensym(filename); + + if(!x->filenametrain) + return; + + post("nn: starting training on file %s, please be patient and wait ... (it could take severeal minutes to complete training)", x->filenametrain->s_name); + + fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations, + x->iterations_between_reports, x->desired_error); + + post("ann_mlp: finished training on file %s", x->filenametrain->s_name); +} + +static void ann_mlp_set_desired_error(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + float desired_error = (float)0.001; + if (0desired_error = desired_error; + post("nn:desired_error set to %f", x->desired_error); + } else + { + error("you must pass me a float"); + } +} + +static void ann_mlp_set_max_iterations(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + unsigned int max_iterations = 500000; + if (argc>0) + { + max_iterations = atom_getint(argv); + x->max_iterations = max_iterations; + post("nn:max_iterations set to %i", x->max_iterations); + } else + { + error("you must pass me an int"); + } +} + +static void ann_mlp_set_iterations_between_reports(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + + unsigned int iterations_between_reports = 1000; + if (argc>0) + { + iterations_between_reports = atom_getint(argv); + x->iterations_between_reports = iterations_between_reports; + post("nn:iterations_between_reports set to %i", x->iterations_between_reports); + } else + { + error("you must pass me an int"); + } + +} + +// run the ann using floats in list passed to the inlet as input values +// and send result to outlet as list of float +static void ann_mlp_run_the_net(t_ann_mlp *x, t_symbol *sl, unsigned int argc, t_atom *argv) +{ + unsigned int i=0; + fann_type *calc_out; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + if(argc < x->ann->num_input) + { + error("ann_mlp: too few input values!!"); + return; + } + + // fill input array with actual data sent to inlet + for (i=0;iann->num_input;i++) + { + x->input[i] = atom_getfloat(argv++); + } + + // run the ann + calc_out = fann_run(x->ann, x->input); + + // fill the output array with result from ann + for (i=0;iann->num_output;i++) + SETFLOAT(x->output+i, calc_out[i]); + + // send output array to outlet + outlet_anything(x->l_out, gensym("list"), + x->ann->num_output, x->output); +} + +static void ann_mlp_train_on_the_fly(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + int i=0; + int quantiINs, quantiOUTs; + float mse; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + quantiINs = x->ann->num_input; + quantiOUTs = x->ann->num_output; + + if ((quantiINs + quantiOUTs)>argc) + { + error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats"); + return; + } + + // fill input array with actual data sent to inlet + for (i=0;iinput[i] = atom_getfloat(argv++); + + for (i=0;iout_float[i] = atom_getfloat(argv++); + + //fann_reset_MSE(x->ann); + + fann_train(x->ann, x->input, x->out_float); + + mse = fann_get_MSE(x->ann); + + outlet_float(x->f_out, mse); +} + +static void ann_mlp_manage_list(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (x->mode) + ann_mlp_run_the_net(x, sl, argc, argv); + else + { + ann_mlp_train_on_the_fly(x, sl, argc, argv); + } +} + +static void ann_mlp_set_filename(t_ann_mlp *x, t_symbol *s) +{ + // make correct path + char patcher_path[MAXPDSTRING]; + char filename[MAXPDSTRING]; + + if(!s) + return; + + // make correct path + canvas_makefilename(x->x_canvas, s->s_name, patcher_path, MAXPDSTRING); + sys_bashfilename(patcher_path, filename); + x->filename = gensym(filename); +} + +static void ann_mlp_load_ann_from_file(t_ann_mlp *x, t_symbol *s) +{ + ann_mlp_set_filename(x,s); + + if(!x->filename) + { + error("ann: no filename !!!"); + return; + } + + // deallocate storage + if(x->ann) + ann_mlp_free(x); + + x->ann = fann_create_from_file(x->filename->s_name); + + if (x->ann == 0) + error("error opening %s", x->filename->s_name); + else + post("nn:ann loaded fom file %s", x->filename->s_name); + + // allocate storage + ann_mlp_allocate_storage(x); +} + +static void ann_mlp_save_ann_to_file(t_ann_mlp *x, t_symbol *s) +{ + ann_mlp_set_filename(x,s); + + if(!x->filename) + { + error("ann: no filename !!!"); + return; + } + + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_save(x->ann, x->filename->s_name); + post("nn:ann saved in file %s", x->filename->s_name); + } +} + +// functions for training algo: +static void ann_mlp_set_FANN_TRAIN_INCREMENTAL(t_ann_mlp *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL); + post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL"); + } +} +static void ann_mlp_set_FANN_TRAIN_BATCH(t_ann_mlp *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH); + post("nn:training algorithm set to FANN_TRAIN_BATCH"); + } +} +static void ann_mlp_set_FANN_TRAIN_RPROP(t_ann_mlp *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP); + post("nn:training algorithm set to FANN_TRAIN_RPROP"); + } +} +static void ann_mlp_set_FANN_TRAIN_QUICKPROP(t_ann_mlp *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP); + post("nn:training algorithm set to FANN_TRAIN_QUICKPROP"); + } +} + +static void ann_mlp_set_activation_function_output(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + t_symbol *parametro = 0; + int funzione = 0; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + if (argc>0) { + parametro = atom_gensym(argv); + if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) + funzione = FANN_THRESHOLD; + if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) + funzione = FANN_THRESHOLD_SYMMETRIC; + if (strcmp(parametro->s_name, "FANN_LINEAR")==0) + funzione = FANN_LINEAR; + if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) + funzione = FANN_SIGMOID; + if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) + funzione = FANN_SIGMOID_STEPWISE; + if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) + funzione = FANN_SIGMOID_SYMMETRIC; + if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) + funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; + if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0) + funzione = FANN_GAUSSIAN; + if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0) + funzione = FANN_GAUSSIAN_STEPWISE; + if (strcmp(parametro->s_name, "FANN_ELLIOT")==0) + funzione = FANN_ELLIOT; + if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0) + funzione = FANN_ELLIOT_SYMMETRIC; + + fann_set_activation_function_output(x->ann, funzione); + } else + { + error("you must specify the activation function"); + } + post("nn:activation function set to %s (%i)", parametro->s_name, funzione); + +} + +static void ann_mlp_set_activation_function_hidden(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + t_symbol *parametro = 0; + int funzione = 0; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + if (argc>0) { + parametro = atom_gensym(argv); + if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) + funzione = FANN_THRESHOLD; + if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) + funzione = FANN_THRESHOLD_SYMMETRIC; + if (strcmp(parametro->s_name, "FANN_LINEAR")==0) + funzione = FANN_LINEAR; + if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) + funzione = FANN_SIGMOID; + if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) + funzione = FANN_SIGMOID_STEPWISE; + if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) + funzione = FANN_SIGMOID_SYMMETRIC; + if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) + funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; + if (strcmp(parametro->s_name, "FANN_GAUSSIAN")==0) + funzione = FANN_GAUSSIAN; + if (strcmp(parametro->s_name, "FANN_GAUSSIAN_STEPWISE")==0) + funzione = FANN_GAUSSIAN_STEPWISE; + if (strcmp(parametro->s_name, "FANN_ELLIOT")==0) + funzione = FANN_ELLIOT; + if (strcmp(parametro->s_name, "FANN_ELLIOT_SYMMETRIC")==0) + funzione = FANN_ELLIOT_SYMMETRIC; + + fann_set_activation_function_hidden(x->ann, funzione); + } else + { + error("you must specify the activation function"); + } + post("nn:activation function set to %s (%i)", parametro->s_name, funzione); + +} + +static void ann_mlp_randomize_weights(t_ann_mlp *x, t_symbol *sl, int argc, t_atom *argv) +{ + t_float min = -1; + t_float max = 1; + + if(!x->ann) + { + post("ann_mlp: ann is not initialized"); + return; + } + + if (argc>0) + min = atom_getfloat(argv++); + + if (argc>1) + max = atom_getfloat(argv++); + + fann_randomize_weights(x->ann, min, max); +} + +static void ann_mlp_learnrate(t_ann_mlp *x, t_float f) +{ + int learnrate = 0; + + if(!x->ann) + { + post("ann_mlp: ann is not initialized"); + return; + } + + learnrate = (f<0) ? 0 : f; + fann_set_learning_rate(x->ann, learnrate); +} + +static void ann_mlp_set_activation_steepness_hidden(t_ann_mlp *x, t_float f) +{ + if(!x->ann) + { + post("ann_mlp: ann is not initialized"); + return; + } + + fann_set_activation_steepness_hidden(x->ann, f); +} + +static void ann_mlp_set_activation_steepness_output(t_ann_mlp *x, t_float f) +{ + if(!x->ann) + { + post("ann_mlp: ann is not initialized"); + return; + } + + fann_set_activation_steepness_output(x->ann, f); +} + +void fann_set_activation_steepness_hidden(struct fann * ann, fann_type steepness); + +static void ann_mlp_print_ann_details(t_ann_mlp *x) +{ + if (x->ann == 0) + { + post("ann_mlp:ann is not initialized"); + } else + { + post("follows a description of the current ann:"); + post("num_input=%i", x->ann->num_input); + post("num_output=%i", x->ann->num_output); + post("learning_rate=%f", x->ann->learning_rate); + post("connection_rate=%f", x->ann->connection_rate); + post("total_neurons=%i", x->ann->total_neurons); + post("total_connections=%i", x->ann->total_connections); + post("last error=%i", x->ann->errstr); + if (x->filename == 0) + { + post("ann_mlp:filename not set"); + } else + { + post("filename=%s", x->filename->s_name); + } + } +} + +static void ann_mlp_print_ann_print(t_ann_mlp *x) +{ + if(!x->ann) + { + post("ann_mlp: ann is not initialized"); + return; + } + + fann_print_connections(x->ann); + fann_print_parameters(x->ann); +} + +static void *ann_mlp_new(t_symbol *s, int argc, t_atom *argv) +{ + t_ann_mlp *x = (t_ann_mlp *)pd_new(ann_mlp_class); + x->l_out = outlet_new(&x->x_obj, &s_list); + x->f_out = outlet_new(&x->x_obj, &s_float); + + x->desired_error = (float)0.001; + x->max_iterations = 500000; + x->iterations_between_reports = 1000; + x->mode=RUN; + x->x_canvas = canvas_getcurrent(); + x->filename = NULL; + x->filenametrain = NULL; + x->ann = NULL; + x->input = NULL; + x->output = NULL; + x->out_float = NULL; + + if (argc>0) { + x->filename = atom_gensym(argv); + ann_mlp_load_ann_from_file(x, NULL); + } + + return (void *)x; +} + +void ann_mlp_setup(void) { + post(""); + post("ann_mlp: multilayer perceptron for PD"); + post("version: "VERSION""); + post("compiled: "__DATE__); + post("author: Davide Morelli"); + post("contact: info@davidemorelli.it www.davidemorelli.it"); + + ann_mlp_class = class_new(gensym("ann_mlp"), + (t_newmethod)ann_mlp_new, + (t_method)ann_mlp_free, sizeof(t_ann_mlp), + CLASS_DEFAULT, A_GIMME, 0); + + // general.. + class_addmethod(ann_mlp_class, (t_method)ann_mlp_help, gensym("help"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_createFann, gensym("create"), A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_train, gensym("train"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_run, gensym("run"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_mode, gensym("setmode"), A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_train_on_file, gensym("train-on-file"), A_DEFSYMBOL, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_manage_list, gensym("data"), A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_filename, gensym("filename"), A_DEFSYMBOL, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_load_ann_from_file, gensym("load"),A_DEFSYMBOL, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_save_ann_to_file, gensym("save"),A_DEFSYMBOL, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_details, gensym("details"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_print_ann_print, gensym("print"), 0); + + // change training parameters + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_desired_error, gensym("desired_error"),A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_max_iterations, gensym("max_iterations"),A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_learnrate, gensym("learnrate"), A_FLOAT, 0); + + // change training and activation algorithms + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_function_hidden, gensym("set_activation_function_hidden"),A_GIMME, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_hidden, gensym("set_activation_steepness_hidden"), A_FLOAT, 0); + class_addmethod(ann_mlp_class, (t_method)ann_mlp_set_activation_steepness_output, gensym("set_activation_steepness_output"), A_FLOAT, 0); + + // initialization: + class_addmethod(ann_mlp_class, (t_method)ann_mlp_randomize_weights, gensym("randomize_weights"),A_GIMME, 0); + + // the most important one: running the ann + class_addlist(ann_mlp_class, (t_method)ann_mlp_manage_list); + + +} diff --git a/src/ann_td.c b/src/ann_td.c index 307ab8d..f135d09 100755 --- a/src/ann_td.c +++ b/src/ann_td.c @@ -1,662 +1,663 @@ -/* ann_td : Time Delay Neural Networks for PD - by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it - this software is simply an interface for FANN classes - http://fann.sourceforge.net/ - FANN is obviously needed for compilation - this software is licensed under the GNU General Public License -*/ -#include -#include -#include "m_pd.h" -#include "fann.h" - -#ifndef VERSION -#define VERSION "0.2" -#endif - -#ifndef __DATE__ -#define __DATE__ "" -#endif - -#define TRAIN 0 -#define RUN 1 - -#define MAXINPUT 1024 -#define MAXOUTPUT 256 - -static t_class *ann_td_class; - -typedef struct _ann_td { - t_object x_obj; - struct fann *ann; - int mode; // 0 = training, 1 = running - t_symbol *filename; // name of the file where this ann is saved - t_symbol *filenametrain; // name of the file with training data - float desired_error; - unsigned int max_iterations; - unsigned int iterations_between_reports; - unsigned int frames; - unsigned int num_input; - t_float *inputs; - unsigned int ins_frames_set; - t_outlet *l_out, *f_out; -} t_ann_td; - -static void ann_td_help(t_ann_td *x) -{ - post(""); - post("ann_td:time delay neural networks for PD"); - post("ann_td:Davide Morelli - info@davidemorelli.it - (c)2005"); - post("ann_td:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output"); - post("ann_td:main commands: create, filename, load, save, train-on-file, run"); - post("ann_td:see help-nn.pd for details on commands and usage"); - post("ann_td:this is an interface to FANN"); - -} - -static void ann_td_deallocate_inputs(t_ann_td *x) -{ - if (x->inputs != 0) - { - freebytes(x->inputs, sizeof(x->inputs)); - x->inputs = 0; - } -} - -static void ann_td_allocate_inputs(t_ann_td *x) -{ - unsigned int i; - ann_td_deallocate_inputs(x); - // allocate space for inputs array - x->inputs = (t_float *)getbytes((x->frames) * (x->num_input) * sizeof(t_float)); - for (i=0; i<(x->frames * x->num_input); i++) x->inputs[i]=0.f; -} - -static void ann_td_createFann(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int num_input = 2; - unsigned int num_output = 1; - unsigned int num_layers = 3; - unsigned int num_neurons_hidden = 3; - float connection_rate = 1; - float learning_rate = (float)0.7; - - if (argc<3) - { - error("you must provide at least num_input, num_output amd frames number"); - return; - } - if (argc>0) - num_input = atom_getint(argv++); - - if (argc>1) - num_output = atom_getint(argv++); - - if (argc>2) - { - x->frames = atom_getint(argv++); - x->ins_frames_set=1; - } - - if (argc>3) - num_layers = atom_getint(argv++); - - if (argc>4) - num_neurons_hidden = atom_getint(argv++); - - if (argc>5) - connection_rate = atom_getfloat(argv++); - - if (argc>6) - learning_rate = atom_getfloat(argv++); - - if ((num_input * x->frames)>MAXINPUT) - { - error("too many inputs, maximum allowed is %f", MAXINPUT/x->frames); - return; - } - - if (num_output>MAXOUTPUT) - { - error("too many outputs, maximum allowed is MAXOUTPUT"); - return; - } - - x->ann = fann_create(connection_rate, learning_rate, num_layers, - (num_input*x->frames), num_neurons_hidden, num_output); - - fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC); - fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC); - - ann_td_allocate_inputs(x); - - if (x->ann == 0) - { - error("error creating the ann"); - } else - { - post("ann_td:created ann with:"); - post("num_input = %i", num_input); - post("num_output = %i", num_output); - post("frames = %i", x->frames); - post("num_layers = %i", num_layers); - post("num_neurons_hidden = %i", num_neurons_hidden); - post("connection_rate = %f", connection_rate); - post("learning_rate = %f", learning_rate); - } -} - -static void ann_td_print_status(t_ann_td *x) -{ - if (x->mode == TRAIN) - post("ann_td:training"); - else - post("ann_td:running"); -} - -static void ann_td_train(t_ann_td *x) -{ - x->mode=TRAIN; - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - fann_reset_MSE(x->ann); - ann_td_print_status(x); -} - -static void ann_td_run(t_ann_td *x) -{ - x->mode=RUN; - ann_td_print_status(x); -} - -static void ann_td_set_mode(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc<1) - { - error("usage: setmode 0/1: 0 for training, 1 for running"); - } - else - { - x->mode = atom_getint(argv++); - ann_td_print_status(x); - } -} - - - -static void ann_td_train_on_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc<1) - { - error("you must specify the filename with training data"); - return; - } else - { - x->filenametrain = atom_gensym(argv); - } - - //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name); - - fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations, - x->iterations_between_reports, x->desired_error); - - post("ann_td: finished training on file %s", x->filenametrain->s_name); -} - -static void ann_td_set_desired_error(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - float desired_error = (float)0.001; - if (0desired_error = desired_error; - post("ann_td:desired_error set to %f", x->desired_error); - } else - { - error("you must pass me a float"); - } -} - -static void ann_td_set_max_iterations(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - unsigned int max_iterations = 500000; - if (argc>0) - { - max_iterations = atom_getint(argv); - x->max_iterations = max_iterations; - post("ann_td:max_iterations set to %i", x->max_iterations); - } else - { - error("you must pass me an int"); - } -} - -static void ann_td_set_iterations_between_reports(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - - unsigned int iterations_between_reports = 1000; - if (argc>0) - { - iterations_between_reports = atom_getint(argv); - x->iterations_between_reports = iterations_between_reports; - post("ann_td:iterations_between_reports set to %i", x->iterations_between_reports); - } else - { - error("you must pass me an int"); - } - -} - - -static void ann_td_scale_inputs(t_ann_td *x) -{ - unsigned int j; - unsigned int k; - - for(j = (x->frames - 1); j>0; j--) - { - // scorro la lista all'indietro - for (k=0; k < x->num_input; k++) - { - // scalo i valori dei frames - x->inputs[(x->num_input) * j + k]=x->inputs[(x->num_input) * (j-1) + k]; - } - } -} - -// run the ann using floats in list passed to the inlet as input values -// and send result to outlet as list of float -static void ann_td_run_the_net(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - int i=0; - unsigned j=0; - //fann_type input[MAXINPUT]; - fann_type *calc_out; - t_atom lista[MAXOUTPUT]; - int quanti; - float valoreTMP; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (x->ins_frames_set==0) - { - error("num_inputs and frames not set"); - return; - } - - if (argc < (int) x->num_input) - { - error("insufficient inputs"); - return; - } - quanti = x->ann->num_output; - - ann_td_scale_inputs(x); - - // fill output array with zeros - for (i=0; inum_input ;j++) - { - //input[j] = atom_getfloat(argv++); - x->inputs[j] = atom_getfloat(argv++); - } - - // run the ann - //calc_out = fann_run(x->ann, input); - calc_out = fann_run(x->ann, x->inputs); - - // fill the output array with result from ann - for (i=0;il_out, - gensym("list") , - quanti, - lista); - -} - -static void ann_td_train_on_the_fly(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - int i=0; - unsigned int j=0; - fann_type input_merged[MAXINPUT]; - fann_type output[MAXOUTPUT]; - //fann_type *calcMSE; - //t_atom lista[MAXOUTPUT]; - float mse; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if ((x->num_input + x->ann->num_output) > (unsigned int) argc) - { - error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats"); - return; - } - - // fill input array with zeros - for (i=0; inum_input; j++) - { - input_merged[j] = atom_getfloat(argv++); - } - for (j = x->num_input; j < (x->num_input * x->frames); j++) - { - input_merged[j] = x->inputs[j]; - } - - for (j = 0; j < (x->ann->num_output);j++) - { - output[j] = atom_getfloat(argv++); - } - - //fann_reset_MSE(x->ann); - - fann_train(x->ann, input_merged, output); - - mse = fann_get_MSE(x->ann); - - outlet_float(x->f_out, mse); - - -} - -static void ann_td_manage_list(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->mode) - ann_td_run_the_net(x, sl, argc, argv); - else - { - ann_td_train_on_the_fly(x, sl, argc, argv); - } -} - -static void ann_td_set_filename(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc>0) { - x->filename = atom_gensym(argv); - } else - { - error("you must specify the filename"); - } - post("nn:filename set to %s", x->filename->s_name); -} - -static void ann_td_load_ann_from_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (x->ins_frames_set==0) - { - error("set num_input and frames with [inputs_frames int int("); - error("I won't load without num_input and frames set"); - return; - } - if (argc>0) { - x->filename = atom_gensym(argv); - } - x->ann = fann_create_from_file(x->filename->s_name); - if (x->ann == 0) - error("error opening %s", x->filename->s_name); - else - post("nn:ann loaded fom file %s", x->filename->s_name); - - ann_td_allocate_inputs(x); -} - -static void ann_td_save_ann_to_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - if (argc>0) { - x->filename = atom_gensym(argv); - } - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_save(x->ann, x->filename->s_name); - post("nn:ann saved in file %s", x->filename->s_name); - } -} - -// functions for training algo: -static void ann_td_set_FANN_TRAIN_INCREMENTAL(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL); - post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL"); - } -} -static void ann_td_set_FANN_TRAIN_BATCH(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH); - post("nn:training algorithm set to FANN_TRAIN_BATCH"); - } -} -static void ann_td_set_FANN_TRAIN_RPROP(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP); - post("nn:training algorithm set to FANN_TRAIN_RPROP"); - } -} -static void ann_td_set_FANN_TRAIN_QUICKPROP(t_ann_td *x) -{ - if (x->ann == 0) - { - error("ann is not initialized"); - } else - { - fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP); - post("nn:training algorithm set to FANN_TRAIN_QUICKPROP"); - } -} - -static void ann_td_set_activation_function_output(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) -{ - t_symbol *parametro = 0; - int funzione = 0; - - if (x->ann == 0) - { - error("ann not initialized"); - return; - } - - if (argc>0) { - parametro = atom_gensym(argv); - if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) - funzione = FANN_THRESHOLD; - if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) - funzione = FANN_THRESHOLD_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_LINEAR")==0) - funzione = FANN_LINEAR; - if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) - funzione = FANN_SIGMOID; - if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) - funzione = FANN_SIGMOID_STEPWISE; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) - funzione = FANN_SIGMOID_SYMMETRIC; - if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) - funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; - fann_set_activation_function_output(x->ann, funzione); - } else - { - error("you must specify the activation function"); - } - post("nn:activation function set to %s (%i)", parametro->s_name, funzione); - -} - -static void ann_td_print_ann_details(t_ann_td *x) -{ - if (x->ann == 0) - { - post("ann_td:ann is not initialized"); - } else - { - post("follows a description of the current ann:"); - post("num_input=%i", x->ann->num_input); - post("num_output=%i", x->ann->num_output); - post("learning_rate=%f", x->ann->learning_rate); - post("connection_rate=%f", x->ann->connection_rate); - post("total_neurons=%i", x->ann->total_neurons); - post("total_connections=%i", x->ann->total_connections); - post("last error=%i", x->ann->errstr); - if (x->filename == 0) - { - post("filename not set"); - } else - { - post("filename=%s", x->filename->s_name); - } - } -} - -static void ann_td_set_num_input_frames(t_ann_td *x, t_floatarg ins, t_floatarg frames) -{ - x->num_input = ins; - x->frames = frames; - x->ins_frames_set=1; -} - -static void *ann_td_new(t_symbol *s, int argc, t_atom *argv) -{ - t_ann_td *x = (t_ann_td *)pd_new(ann_td_class); - x->l_out = outlet_new(&x->x_obj, &s_list); - x->f_out = outlet_new(&x->x_obj, &s_float); - - x->desired_error = (float)0.001; - x->max_iterations = 500000; - x->iterations_between_reports = 1000; - x->mode=RUN; - x->ins_frames_set=0; - - if (argc<2) - { - error("2 arguments needed: num_input and frames. filename optional"); - return (void *)x; - } - - if (argc>0) { - x->num_input = atom_getint(argv++); - } - - if (argc>1) { - x->frames = atom_getint(argv++); - x->ins_frames_set=1; - ann_td_allocate_inputs(x); - } - - if (argc>2) { - x->filename = atom_gensym(argv); - ann_td_load_ann_from_file(x, NULL , 0, NULL); - } - - return (void *)x; -} - -// free resources -static void ann_td_free(t_ann_td *x) -{ - struct fann *ann = x->ann; - fann_destroy(ann); - ann_td_deallocate_inputs(x); - // TODO: free other resources! -} - -void ann_td_setup(void) { - post(""); - post("ann_td: time delay neural nets for PD"); - post("version: "VERSION""); - post("compiled: "__DATE__); - post("author: Davide Morelli"); - post("contact: info@davidemorelli.it www.davidemorelli.it"); - - ann_td_class = class_new(gensym("ann_td"), - (t_newmethod)ann_td_new, - (t_method)ann_td_free, sizeof(t_ann_td), - CLASS_DEFAULT, A_GIMME, 0); - - // general.. - class_addmethod(ann_td_class, (t_method)ann_td_help, gensym("help"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_createFann, gensym("create"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_train, gensym("train"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_run, gensym("run"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_mode, gensym("setmode"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_train_on_file, gensym("train-on-file"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_manage_list, gensym("data"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_filename, gensym("filename"), A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_load_ann_from_file, gensym("load"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_save_ann_to_file, gensym("save"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_print_ann_details, gensym("details"), 0); - - // change training parameters - class_addmethod(ann_td_class, (t_method)ann_td_set_desired_error, gensym("desired_error"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_max_iterations, gensym("max_iterations"),A_GIMME, 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0); - - // change training and activation algorithms - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0); - class_addmethod(ann_td_class, (t_method)ann_td_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0); - - class_addmethod(ann_td_class, (t_method)ann_td_set_num_input_frames, gensym("inputs_frames"),A_DEFFLOAT, A_DEFFLOAT, 0); - - // the most important one: running the ann - class_addlist(ann_td_class, (t_method)ann_td_manage_list); - - -} +/* ann_td : Time Delay Neural Networks for PD + by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it + this software is simply an interface for FANN classes + http://fann.sourceforge.net/ + FANN is obviously needed for compilation + use 1.2 version only + this software is licensed under the GNU General Public License +*/ +#include +#include +#include "m_pd.h" +#include "fann.h" + +#ifndef VERSION +#define VERSION "0.2" +#endif + +#ifndef __DATE__ +#define __DATE__ "" +#endif + +#define TRAIN 0 +#define RUN 1 + +#define MAXINPUT 1024 +#define MAXOUTPUT 256 + +static t_class *ann_td_class; + +typedef struct _ann_td { + t_object x_obj; + struct fann *ann; + int mode; // 0 = training, 1 = running + t_symbol *filename; // name of the file where this ann is saved + t_symbol *filenametrain; // name of the file with training data + float desired_error; + unsigned int max_iterations; + unsigned int iterations_between_reports; + unsigned int frames; + unsigned int num_input; + t_float *inputs; + unsigned int ins_frames_set; + t_outlet *l_out, *f_out; +} t_ann_td; + +static void ann_td_help(t_ann_td *x) +{ + post(""); + post("ann_td:time delay neural networks for PD"); + post("ann_td:Davide Morelli - info@davidemorelli.it - (c)2005"); + post("ann_td:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output"); + post("ann_td:main commands: create, filename, load, save, train-on-file, run"); + post("ann_td:see help-nn.pd for details on commands and usage"); + post("ann_td:this is an interface to FANN"); + +} + +static void ann_td_deallocate_inputs(t_ann_td *x) +{ + if (x->inputs != 0) + { + freebytes(x->inputs, sizeof(x->inputs)); + x->inputs = 0; + } +} + +static void ann_td_allocate_inputs(t_ann_td *x) +{ + unsigned int i; + ann_td_deallocate_inputs(x); + // allocate space for inputs array + x->inputs = (t_float *)getbytes((x->frames) * (x->num_input) * sizeof(t_float)); + for (i=0; i<(x->frames * x->num_input); i++) x->inputs[i]=0.f; +} + +static void ann_td_createFann(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + unsigned int num_input = 2; + unsigned int num_output = 1; + unsigned int num_layers = 3; + unsigned int num_neurons_hidden = 3; + float connection_rate = 1; + float learning_rate = (float)0.7; + + if (argc<3) + { + error("you must provide at least num_input, num_output amd frames number"); + return; + } + if (argc>0) + num_input = atom_getint(argv++); + + if (argc>1) + num_output = atom_getint(argv++); + + if (argc>2) + { + x->frames = atom_getint(argv++); + x->ins_frames_set=1; + } + + if (argc>3) + num_layers = atom_getint(argv++); + + if (argc>4) + num_neurons_hidden = atom_getint(argv++); + + if (argc>5) + connection_rate = atom_getfloat(argv++); + + if (argc>6) + learning_rate = atom_getfloat(argv++); + + if ((num_input * x->frames)>MAXINPUT) + { + error("too many inputs, maximum allowed is %f", MAXINPUT/x->frames); + return; + } + + if (num_output>MAXOUTPUT) + { + error("too many outputs, maximum allowed is MAXOUTPUT"); + return; + } + + x->ann = fann_create(connection_rate, learning_rate, num_layers, + (num_input*x->frames), num_neurons_hidden, num_output); + + fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC); + fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC); + + ann_td_allocate_inputs(x); + + if (x->ann == 0) + { + error("error creating the ann"); + } else + { + post("ann_td:created ann with:"); + post("num_input = %i", num_input); + post("num_output = %i", num_output); + post("frames = %i", x->frames); + post("num_layers = %i", num_layers); + post("num_neurons_hidden = %i", num_neurons_hidden); + post("connection_rate = %f", connection_rate); + post("learning_rate = %f", learning_rate); + } +} + +static void ann_td_print_status(t_ann_td *x) +{ + if (x->mode == TRAIN) + post("ann_td:training"); + else + post("ann_td:running"); +} + +static void ann_td_train(t_ann_td *x) +{ + x->mode=TRAIN; + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + fann_reset_MSE(x->ann); + ann_td_print_status(x); +} + +static void ann_td_run(t_ann_td *x) +{ + x->mode=RUN; + ann_td_print_status(x); +} + +static void ann_td_set_mode(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (argc<1) + { + error("usage: setmode 0/1: 0 for training, 1 for running"); + } + else + { + x->mode = atom_getint(argv++); + ann_td_print_status(x); + } +} + + + +static void ann_td_train_on_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + if (argc<1) + { + error("you must specify the filename with training data"); + return; + } else + { + x->filenametrain = atom_gensym(argv); + } + + //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name); + + fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations, + x->iterations_between_reports, x->desired_error); + + post("ann_td: finished training on file %s", x->filenametrain->s_name); +} + +static void ann_td_set_desired_error(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + float desired_error = (float)0.001; + if (0desired_error = desired_error; + post("ann_td:desired_error set to %f", x->desired_error); + } else + { + error("you must pass me a float"); + } +} + +static void ann_td_set_max_iterations(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + unsigned int max_iterations = 500000; + if (argc>0) + { + max_iterations = atom_getint(argv); + x->max_iterations = max_iterations; + post("ann_td:max_iterations set to %i", x->max_iterations); + } else + { + error("you must pass me an int"); + } +} + +static void ann_td_set_iterations_between_reports(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + + unsigned int iterations_between_reports = 1000; + if (argc>0) + { + iterations_between_reports = atom_getint(argv); + x->iterations_between_reports = iterations_between_reports; + post("ann_td:iterations_between_reports set to %i", x->iterations_between_reports); + } else + { + error("you must pass me an int"); + } + +} + + +static void ann_td_scale_inputs(t_ann_td *x) +{ + unsigned int j; + unsigned int k; + + for(j = (x->frames - 1); j>0; j--) + { + // scorro la lista all'indietro + for (k=0; k < x->num_input; k++) + { + // scalo i valori dei frames + x->inputs[(x->num_input) * j + k]=x->inputs[(x->num_input) * (j-1) + k]; + } + } +} + +// run the ann using floats in list passed to the inlet as input values +// and send result to outlet as list of float +static void ann_td_run_the_net(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + int i=0; + unsigned j=0; + //fann_type input[MAXINPUT]; + fann_type *calc_out; + t_atom lista[MAXOUTPUT]; + int quanti; + float valoreTMP; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + if (x->ins_frames_set==0) + { + error("num_inputs and frames not set"); + return; + } + + if (argc < (int) x->num_input) + { + error("insufficient inputs"); + return; + } + quanti = x->ann->num_output; + + ann_td_scale_inputs(x); + + // fill output array with zeros + for (i=0; inum_input ;j++) + { + //input[j] = atom_getfloat(argv++); + x->inputs[j] = atom_getfloat(argv++); + } + + // run the ann + //calc_out = fann_run(x->ann, input); + calc_out = fann_run(x->ann, x->inputs); + + // fill the output array with result from ann + for (i=0;il_out, + gensym("list") , + quanti, + lista); + +} + +static void ann_td_train_on_the_fly(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + int i=0; + unsigned int j=0; + fann_type input_merged[MAXINPUT]; + fann_type output[MAXOUTPUT]; + //fann_type *calcMSE; + //t_atom lista[MAXOUTPUT]; + float mse; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + if ((x->num_input + x->ann->num_output) > (unsigned int) argc) + { + error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats"); + return; + } + + // fill input array with zeros + for (i=0; inum_input; j++) + { + input_merged[j] = atom_getfloat(argv++); + } + for (j = x->num_input; j < (x->num_input * x->frames); j++) + { + input_merged[j] = x->inputs[j]; + } + + for (j = 0; j < (x->ann->num_output);j++) + { + output[j] = atom_getfloat(argv++); + } + + //fann_reset_MSE(x->ann); + + fann_train(x->ann, input_merged, output); + + mse = fann_get_MSE(x->ann); + + outlet_float(x->f_out, mse); + + +} + +static void ann_td_manage_list(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (x->mode) + ann_td_run_the_net(x, sl, argc, argv); + else + { + ann_td_train_on_the_fly(x, sl, argc, argv); + } +} + +static void ann_td_set_filename(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (argc>0) { + x->filename = atom_gensym(argv); + } else + { + error("you must specify the filename"); + } + post("nn:filename set to %s", x->filename->s_name); +} + +static void ann_td_load_ann_from_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (x->ins_frames_set==0) + { + error("set num_input and frames with [inputs_frames int int("); + error("I won't load without num_input and frames set"); + return; + } + if (argc>0) { + x->filename = atom_gensym(argv); + } + x->ann = fann_create_from_file(x->filename->s_name); + if (x->ann == 0) + error("error opening %s", x->filename->s_name); + else + post("nn:ann loaded fom file %s", x->filename->s_name); + + ann_td_allocate_inputs(x); +} + +static void ann_td_save_ann_to_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + if (argc>0) { + x->filename = atom_gensym(argv); + } + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_save(x->ann, x->filename->s_name); + post("nn:ann saved in file %s", x->filename->s_name); + } +} + +// functions for training algo: +static void ann_td_set_FANN_TRAIN_INCREMENTAL(t_ann_td *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL); + post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL"); + } +} +static void ann_td_set_FANN_TRAIN_BATCH(t_ann_td *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH); + post("nn:training algorithm set to FANN_TRAIN_BATCH"); + } +} +static void ann_td_set_FANN_TRAIN_RPROP(t_ann_td *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP); + post("nn:training algorithm set to FANN_TRAIN_RPROP"); + } +} +static void ann_td_set_FANN_TRAIN_QUICKPROP(t_ann_td *x) +{ + if (x->ann == 0) + { + error("ann is not initialized"); + } else + { + fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP); + post("nn:training algorithm set to FANN_TRAIN_QUICKPROP"); + } +} + +static void ann_td_set_activation_function_output(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) +{ + t_symbol *parametro = 0; + int funzione = 0; + + if (x->ann == 0) + { + error("ann not initialized"); + return; + } + + if (argc>0) { + parametro = atom_gensym(argv); + if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) + funzione = FANN_THRESHOLD; + if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) + funzione = FANN_THRESHOLD_SYMMETRIC; + if (strcmp(parametro->s_name, "FANN_LINEAR")==0) + funzione = FANN_LINEAR; + if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) + funzione = FANN_SIGMOID; + if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) + funzione = FANN_SIGMOID_STEPWISE; + if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) + funzione = FANN_SIGMOID_SYMMETRIC; + if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) + funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; + fann_set_activation_function_output(x->ann, funzione); + } else + { + error("you must specify the activation function"); + } + post("nn:activation function set to %s (%i)", parametro->s_name, funzione); + +} + +static void ann_td_print_ann_details(t_ann_td *x) +{ + if (x->ann == 0) + { + post("ann_td:ann is not initialized"); + } else + { + post("follows a description of the current ann:"); + post("num_input=%i", x->ann->num_input); + post("num_output=%i", x->ann->num_output); + post("learning_rate=%f", x->ann->learning_rate); + post("connection_rate=%f", x->ann->connection_rate); + post("total_neurons=%i", x->ann->total_neurons); + post("total_connections=%i", x->ann->total_connections); + post("last error=%i", x->ann->errstr); + if (x->filename == 0) + { + post("filename not set"); + } else + { + post("filename=%s", x->filename->s_name); + } + } +} + +static void ann_td_set_num_input_frames(t_ann_td *x, t_floatarg ins, t_floatarg frames) +{ + x->num_input = ins; + x->frames = frames; + x->ins_frames_set=1; +} + +static void *ann_td_new(t_symbol *s, int argc, t_atom *argv) +{ + t_ann_td *x = (t_ann_td *)pd_new(ann_td_class); + x->l_out = outlet_new(&x->x_obj, &s_list); + x->f_out = outlet_new(&x->x_obj, &s_float); + + x->desired_error = (float)0.001; + x->max_iterations = 500000; + x->iterations_between_reports = 1000; + x->mode=RUN; + x->ins_frames_set=0; + + if (argc<2) + { + error("2 arguments needed: num_input and frames. filename optional"); + return (void *)x; + } + + if (argc>0) { + x->num_input = atom_getint(argv++); + } + + if (argc>1) { + x->frames = atom_getint(argv++); + x->ins_frames_set=1; + ann_td_allocate_inputs(x); + } + + if (argc>2) { + x->filename = atom_gensym(argv); + ann_td_load_ann_from_file(x, NULL , 0, NULL); + } + + return (void *)x; +} + +// free resources +static void ann_td_free(t_ann_td *x) +{ + struct fann *ann = x->ann; + fann_destroy(ann); + ann_td_deallocate_inputs(x); + // TODO: free other resources! +} + +void ann_td_setup(void) { + post(""); + post("ann_td: time delay neural nets for PD"); + post("version: "VERSION""); + post("compiled: "__DATE__); + post("author: Davide Morelli"); + post("contact: info@davidemorelli.it www.davidemorelli.it"); + + ann_td_class = class_new(gensym("ann_td"), + (t_newmethod)ann_td_new, + (t_method)ann_td_free, sizeof(t_ann_td), + CLASS_DEFAULT, A_GIMME, 0); + + // general.. + class_addmethod(ann_td_class, (t_method)ann_td_help, gensym("help"), 0); + class_addmethod(ann_td_class, (t_method)ann_td_createFann, gensym("create"), A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_train, gensym("train"), 0); + class_addmethod(ann_td_class, (t_method)ann_td_run, gensym("run"), 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_mode, gensym("setmode"), A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_train_on_file, gensym("train-on-file"), A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_manage_list, gensym("data"), A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_filename, gensym("filename"), A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_load_ann_from_file, gensym("load"),A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_save_ann_to_file, gensym("save"),A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_print_ann_details, gensym("details"), 0); + + // change training parameters + class_addmethod(ann_td_class, (t_method)ann_td_set_desired_error, gensym("desired_error"),A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_max_iterations, gensym("max_iterations"),A_GIMME, 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0); + + // change training and activation algorithms + class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0); + class_addmethod(ann_td_class, (t_method)ann_td_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0); + + class_addmethod(ann_td_class, (t_method)ann_td_set_num_input_frames, gensym("inputs_frames"),A_DEFFLOAT, A_DEFFLOAT, 0); + + // the most important one: running the ann + class_addlist(ann_td_class, (t_method)ann_td_manage_list); + + +} -- cgit v1.2.1