/* ann_som : part of the ARTIFICIAL NEURAL NETWORK external for PURE DATA SELF-ORGANIZED MAP : instar learning-rule (l) 0201:forum::f�r::uml�ute:2001 this software is licensed under the GNU General Public License */ #include "ann.h" #include <math.h> #ifdef NT #define sqrtf sqrt #endif #if 1 #include <stdio.h> #include <fcntl.h> #include <string.h> #ifdef linux #include <unistd.h> #endif #ifdef NT #include <io.h> #endif #endif /* ****************************************************************************** */ /* som : save and load messages... */ #define INSTAR 1 #define OUTSTAR 2 #define KOHONEN 0 /* learning-rule INSTAR : instar learning-rule */ #define TRAIN 0 #define TEST 1 typedef struct _som { t_object x_obj; t_outlet *left, *right; int rule; /* INSTAR, OUTSTAR, KOHONEN */ int mode; /* TRAIN, TEST */ t_symbol *filename; int defaultfilename; /* TRUE if filename is still "default.som" */ int num_neurX, num_neurY; /* for 2dim-fields */ int num_neurons; /* num_neurX * num_neurY */ int num_sensors; t_float **weights; /* the neural network (pointer to neuron (neuron is a pointer to an array of weights)) */ t_float **dist; /* squaredistances between neurons (for neighbourhood) (pointer to neuron (is a pointer to an array of distances))*/ t_float *workingspace; /* a for comparing data*/ double lr, lr_factor, lr_bias; /* learning rate: lr(n)=(lr(n-1)*lr_factor; LR=lr(n)+lr_bias */ double nb, nb_factor, nb_bias; /* neighbourhood */ /* something for reading/writing to files */ t_canvas *x_canvas; t_symbol *x_dir; } t_som; static t_class *som_class; /* ----------------- private functions -------------------- */ static void som_killsom(t_som *x) { /* kill the weights-field */ int i=x->num_neurons; while (i--) { freebytes(x->weights[i], sizeof(x->weights[i])); x->weights[i]=0; } freebytes(x->weights, sizeof(x->weights)); x->weights = 0; /* kill the dist-field */ i=x->num_neurons; while (i--) { freebytes(x->dist[i], sizeof(x->dist[i])); x->dist[i]=0; } freebytes(x->dist, sizeof(x->dist)); x->dist = 0; /* kill the working-space */ freebytes(x->workingspace, sizeof(x->workingspace)); x->workingspace = 0; } static void som_makedist(t_som *x) { int i, j; x->dist = (t_float **)getbytes(x->num_neurons * sizeof(t_float *)); for (i=0; i<x->num_neurons; i++) { int X1 = (i%x->num_neurX), Y1 = (i/x->num_neurX); x->dist[i]=(t_float *)getbytes(x->num_neurons * sizeof(t_float)); for (j=0; j<x->num_neurons; j++) { int X2 = (j%x->num_neurX), Y2 = (j/x->num_neurX); x->dist[i][j] = sqrt((X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2)); } } } static int som_whosthewinner(t_som *x, t_float *senses) { t_float min_dist = 0; int min_n = x->num_neurons-1; t_float *weight = x->weights[min_n]; int n = x->num_sensors; while (n--) { t_float f = senses[n] - weight[n]; min_dist += f*f; } n=x->num_neurons-1; while (n--) { int s = x->num_sensors; t_float dist = 0; weight = x->weights[n]; while (s--) { t_float f; f = senses[s] - weight[s]; dist += f*f; } if (dist<min_dist) { min_dist = dist; min_n = n; } } return min_n; } static void som_createnewsom(t_som *x, int sens, int nx, int ny) { /* create a new SOM */ int i, j; /* clean up the old SOM */ som_killsom(x); /* make new SOM */ x->num_neurons = nx * ny; x->num_neurX = nx; x->num_neurY = ny; x->num_sensors = sens; x->weights = (t_float **)getbytes(x->num_neurons * sizeof(t_float *)); for (i=0; i<x->num_neurons; i++) { x->weights[i]=(t_float *)getbytes(x->num_sensors * sizeof(t_float)); for (j=0; j<x->num_sensors; j++) x->weights[i][j] = 0; } /* make new dist */ som_makedist(x); /* make new workingspace */ x->workingspace = (t_float *)getbytes(x->num_sensors * sizeof(t_float)); for (i=0; i<x->num_sensors; i++) x->workingspace[i]=0.f; } /* ----------------- public functions ---------------------- */ static void som_list(t_som *x, t_symbol *sl, int argc, t_atom *argv) { /* present the data */ int i = x->num_sensors; // t_float *data = (t_float *)getbytes(sizeof(t_float) * i); t_float *data = x->workingspace; t_float *dummy = data; int winner; t_float learningrate = x->lr+x->lr_bias, neighbourhood = x->nb+x->nb_bias; /* first: extract the data */ /* check if there is enough input data; fill up with zeros if not; if there's plenty, maybe forget about the rest */ if ((i = x->num_sensors - argc) > 0) { dummy = data + argc; while (i--) *dummy++ = 0; i = x->num_sensors; } else i = x->num_sensors; dummy = data; /* really get the data */ while (i--) *dummy++ = atom_getfloat(argv++); /* second: get the winning neuron */ winner = som_whosthewinner(x, data); if (x->mode == TRAIN) { /* third: learn something */ /* update all the neurons that are within the neighbourhood */ i=x->num_neurons; switch (x->rule) { case OUTSTAR: while (i--) { t_float dist = x->dist[winner][i]; if (neighbourhood > dist) { t_float factor = 1 - dist/neighbourhood; t_float *weight=x->weights[i]; int s = x->num_sensors; while (s--) weight[s] += learningrate*data[s]*(factor-weight[s]); } } break; case INSTAR: while (i--) { t_float dist = x->dist[winner][i]; if (neighbourhood > dist) { t_float factor = learningrate * (1 - dist/neighbourhood); t_float *weight=x->weights[i]; int s = x->num_sensors; while (s--) weight[s] += (data[s]-weight[s])*factor; } } break; default: /* KOHONEN rule */ while (i--) { t_float dist = x->dist[winner][i]; if (neighbourhood > dist) { t_float *weight=x->weights[i]; int s = x->num_sensors; while (s--) weight[s] += (data[s]-weight[s])*learningrate; } } } /* update learning-rate and neighbourhood */ x->lr *= x->lr_factor; x->nb *= x->nb_factor; } /* finally: do the output thing */ /* do the output thing */ outlet_float(x->x_obj.ob_outlet, winner); // freebytes(data, sizeof(t_float)*x->num_sensors); } static void som_bang(t_som *x) { /* re-trigger the last output */ error("som_bang: nothing to do"); } static void som_init(t_som *x, t_symbol *s, int argc, t_atom *argv) { /* initialize the neuron-weights */ int i, j; t_float f; switch (argc) { case 0: case 1: f = (argc)?atom_getfloat(argv):0; for (i=0; i<x->num_neurons; i++) for (j=0; j<x->num_sensors; j++) x->weights[i][j]=f; break; default: if (argc == x->num_sensors) { for (i=0; i<x->num_neurons; i++) for (j=0; j<x->num_sensors; j++) x->weights[i][j]=atom_getfloat(&argv[j]); } else error("som_init: you should pass a list of expected mean-values for each sensor to the SOM"); } } /* centered initialization: * the "first" neuron will be set to all zeros * the "middle" neuron will be set to the given data * the "last" neuron will be set to teh double of the given data */ static void som_cinit(t_som *x, t_symbol *s, int argc, t_atom *argv){ /* initialize the neuron-weights */ int i, j; t_float f; t_float v = 1.0f; switch (argc) { case 0: case 1: f = (argc)?atom_getfloat(argv):0; for (i=0; i<x->num_neurons; i++){ v=i*2.0/x->num_neurons; for (j=0; j<x->num_sensors; j++) x->weights[i][j]=f*v; } break; default: if (argc == x->num_sensors) { for (i=0; i<x->num_neurons; i++){ v=i*2.0/x->num_neurons; for (j=0; j<x->num_sensors; j++) x->weights[i][j]=v*atom_getfloat(&argv[j]); } } else error("som_init: you should pass a list of expected mean-values for each sensor to the SOM"); } } /* dump the weights of the queried neuron to the output */ static void som_dump(t_som *x, t_float nf){ int n=nf; int i=x->num_sensors; t_atom*ap=0; if (n<0 || n>=x->num_neurons)return; ap=(t_atom*)getbytes(sizeof(t_atom)*x->num_sensors); while(i--)SETFLOAT(&ap[i], x->weights[n][i]); outlet_list(x->x_obj.ob_outlet, &s_list, x->num_sensors, ap); freebytes(ap, x->num_sensors*sizeof(t_atom)); } static void som_makenewsom(t_som *x, t_symbol *s, int argc, t_atom *argv) { /* create a new SOM */ int sens, nx, ny; /* check whether there is sufficient data to create a new SOM */ if ((argc != 2) && (argc !=3)) { error("som_new: wrong number of arguments (only 2 or 3 parameters are allowed)"); return; } /* 3 arguments : #sensors #neurX #neurY :: 2D-field of neurons with neurX * neurY items 2 arguments : #sensors #neurXY :: 2D-field of neurons with neurXY* neurXY items to create more-dimensional fields, we now have to manually adjust the SOM-file (change the distances...) LATER, we might do a function "ann_makedist" */ sens = atom_getfloat(argv); if (sens <= 0) { error("some_new: number of sensors must be >= 1"); return; } if (argc==3) { nx = atom_getint(argv+1); ny = atom_getint(argv+2); if ((nx<=0) || (ny<=0)) { error("some_new: number of neurons must be >= 1"); return; } } else { nx = atom_getint(argv+1); if (nx<=0) { error("some_new: number of neurons must be >= 1"); return; } ny = nx; } som_createnewsom(x, sens, nx, ny); } static void som_train(t_som *x) { /* set the mode to TRAIN */ x->mode = TRAIN; } static void som_test(t_som *x) { /* set the mode to TEST */ x->mode = TEST; } static void som_rule(t_som *x, t_symbol *s, int argc, t_atom *argv) { /* set the learning rule */ int rule=-1; if (argc>1) { error("som_rule: only 1 argument may be specified"); return; } if (argc == 0) { post("som_rule: you are currently training with the %s rule", (x->rule==INSTAR)?"INSTAR":(x->rule==OUTSTAR)?"OUTSTAR":"KOHONEN"); return; } if (argv->a_type==A_FLOAT) rule=atom_getint(argv); else if (argv->a_type==A_SYMBOL) { char name=*atom_getsymbol(argv)->s_name; if (name=='I' || name=='i') rule=INSTAR; else if (name=='O' || name=='O') rule=OUTSTAR; else if (name=='K' || name=='k') rule=KOHONEN; } switch (rule) { case KOHONEN: case INSTAR: case OUTSTAR: x->rule=rule; break; default: error("som_rule: you specified an invalid rule !"); } } static void som_learn(t_som *x, t_symbol *s, int argc, t_atom *argv) { /* set a new LEARNINGRATE */ switch (argc) { case 3: x->lr_bias = atom_getfloat(&argv[2]); case 2: x->lr_factor = atom_getfloat(&argv[1]); case 1: x->lr = atom_getfloat(&argv[0]); break; default: error("som_learn: you should pass up to 4 learning-rate parameters"); } } static void som_neighbour(t_som *x, t_symbol *s, int argc, t_atom *argv) { /* set a new NEIGHBOURHOOD */ switch (argc) { case 3: x->nb_bias = atom_getfloat(&argv[2]); case 2: x->nb_factor = atom_getfloat(&argv[1]); case 1: x->nb = atom_getfloat(&argv[0]); break; default: error("som_neighbour: you should pass up to 4 neighbourhood parameters"); } } static void som_read(t_som *x, t_symbol *s, int argc, t_atom *argv) { /* read a som-file */ int fd; char filnam[MAXPDSTRING]; char buf[MAXPDSTRING], *bufptr; int neuronsX, neuronsY, sensors, rule=0; double lr[3], nb[3]; t_float dummy; char *text=0; int i, j; t_float *fp; FILE *f=0; text = (char *)getbytes(MAXPDSTRING*sizeof(char)); if (argc>0) { x->filename = atom_gensym(argv); x->defaultfilename = 0; } if (x->defaultfilename) error("som_read: reading from default file \"%s\"", x->filename->s_name); if ((fd = open_via_path(canvas_getdir(x->x_canvas)->s_name, x->filename->s_name, "", buf, &bufptr, MAXPDSTRING, 0)) < 0) { error("%s: can't open", x->filename->s_name); return; } else close (fd); /* open */ sys_bashfilename(x->filename->s_name, filnam); dummy = 0; while (f == 0) { if (!(f = fopen(filnam, "r"))) { error("msgfile_read: unable to open %s", filnam); return; } /* read */ /* read header */ if ( (dummy=fscanf(f,"SOM:\n%d",&sensors)) != 1) { error("som_read: error reading file\n"); break; } if ( (dummy=fscanf(f,"%d",&neuronsX)) != 1) { error("som_read: error reading file\n"); break; } if ( (dummy=fscanf(f,"%d",&neuronsY)) != 1) { error("som_read: error reading file\n"); break; } fscanf(f,"%s",text); if (!strcmp("INSTAR", text)) rule = INSTAR; else if (!strcmp("OUTSTAR", text)) rule = OUTSTAR; else if (!strcmp("KOHONEN", text)) rule = KOHONEN; for (i=0; i<3; i++) if ( (fscanf(f,"%lf",&lr[i])) != 1) { error("som_read: error reading file\n"); break; } for (i=0; i<3; i++) if ( (fscanf(f,"%lf",&nb[i])) != 1) { error("som_read: error reading file\n"); break; } /* we now have a valid SOM-definition let's create a dummy SOM */ som_createnewsom(x, sensors, neuronsX, neuronsY); x->rule = rule; x->lr=lr[0]; x->lr_factor=lr[1]; x->lr_bias=lr[2]; x->nb=nb[0]; x->nb_factor=nb[1]; x->nb_bias=nb[2]; /* read the weights */ if ((fscanf(f,"\nweights:\n %f",&dummy)) != 1) { break; } i=0; while (i<x->num_neurons) { j = x->num_sensors; fp= x->weights[i]; while (j--) { *fp++=dummy; if ((fscanf(f,"%f",&dummy)) != 1) { break; } } j = x->num_sensors; i++; } /* finally read the distances */ if ((fscanf(f,"\ndists:\n %f",&dummy)) != 1) { break; } i=0; while (i<x->num_neurons) { j = x->num_neurons; fp= x->dist[i]; while (j--) { *fp++=dummy; if ((fscanf(f,"%f",&dummy)) != 1) { break; } } j = x->num_sensors; i++; } } /* close file */ if (f) fclose(f); } static void som_write(t_som *x, t_symbol *s, int argc, t_atom *argv) { /* write a som-file */ char filnam[MAXPDSTRING]; char buf[MAXPDSTRING]; char *text=0; int textlen; FILE *f=0; int i; if (argc>0) { x->filename = atom_gensym(argv); x->defaultfilename = 0; } if (x->defaultfilename) error("som_write: writing to default file \"%s\"", x->filename->s_name); canvas_makefilename(x->x_canvas, x->filename->s_name, buf, MAXPDSTRING); sys_bashfilename(x->filename->s_name, filnam); while (f==0) { /* open file */ if (!(f = fopen(filnam, "w"))) { error("msgfile : failed to open %s", filnam); } else { /* write header information */ text=(char *)getbytes(sizeof(char)*MAXPDSTRING); sprintf(text, "SOM:\n%d %d %d %s\n%.15f %.15f %.15f\n%.15f %.15f %.15f\nweights:\n", x->num_sensors, x->num_neurX, x->num_neurY, (x->rule==INSTAR)?"INSTAR":(x->rule==OUTSTAR)?"OUTSTAR":"KOHONEN", x->lr, x->lr_factor, x->lr_bias, x->nb, x->nb_factor, x->nb_bias); textlen = strlen(text); if (fwrite(text, textlen*sizeof(char), 1, f) < 1) { error("msgfile : failed to write %s", filnam); break; } /* write weights */ for (i=0; i<x->num_neurons; i++) { int j=x->num_sensors; t_float *weight = x->weights[i]; while (j--) { sprintf(text, " %.15f", *weight++); textlen=strlen(text); if (fwrite(text, textlen*sizeof(char), 1, f) < 1) { error("msgfile : failed to write %s", filnam); break; } } if (fwrite("\n", sizeof(char), 1, f) < 1) { error("msgfile : failed to write %s", filnam); break; } } /* write dists */ if (fwrite("dists:\n", 7*sizeof(char), 1, f) < 1) { error("msgfile : failed to write %s", filnam); break; } for (i=0; i<x->num_neurons; i++) { int j=x->num_neurons; t_float *dist = x->dist[i]; while (j--) { sprintf(text, " %.15f", *dist++); textlen=strlen(text); if (fwrite(text, textlen*sizeof(char), 1, f) < 1) { error("msgfile : failed to write %s", filnam); break; } } if (fwrite("\n", sizeof(char), 1, f) < 1) { error("msgfile : failed to write %s", filnam); break; } } } } /* close file */ if (f) fclose(f); freebytes(text, sizeof(text)); } static void som_help(t_som *x) { post("\nann_som\t:: self orgranized map"); post("<f1> <f2> <f3>... <fn>\t: train/test som with data" "\nlearn\t\t:... " "\nhelp\t\t: show this help"); post("creation: \"ann_som <som-file>\": <som-file> defines a file to be loeaded as a som"); } static void som_print(t_som *x) { char c = (x->defaultfilename)?'\0':'\"'; post("\nann_som\t:: self orgranized map"); post("rule=%s\tmode=%s", (x->rule==INSTAR)?"INSTAR":(x->rule==OUTSTAR)?"OUTSTAR":"KOHONEN", (x->mode==TEST)?"TEST":"TRAIN"); post("file = %c%s%c", c, x->filename->s_name,c ); post("neurons = %d*%d = %d\tsensors=%d", x->num_neurX, x->num_neurY, x->num_neurons, x->num_sensors); post("learning-rate : lr=%.15f\tlr_x=%.15f\tlr_o=%.15f", x->lr, x->lr_factor, x->lr_bias); post("neighbourhood : nb=%.15f\tnb_x=%.15f\tnb_o=%.15f\n", x->nb, x->nb_factor, x->nb_bias); } static void som_free(t_som *x) { som_killsom(x); } static void *som_new(t_symbol *s, int argc, t_atom *argv) { t_som *x = (t_som *)pd_new(som_class); outlet_new(&x->x_obj, 0); x->rule = INSTAR; x->mode = TRAIN; x->filename = gensym("default.som"); x->defaultfilename = 1; x->num_neurX = 0; x->num_neurY = 0; x->num_neurons = 0; x->num_sensors = 0; x->weights = 0; x->dist = 0; x->lr = 1; x->lr_factor = 0.999999999; x->lr_bias = 0; x->nb = 10; x->nb_factor = 0.999999999; x->nb_bias = 0.999999999; x->x_canvas = canvas_getcurrent(); if ((argc==0) || (argv->a_type == A_SYMBOL)) { /* load the som-file */ if (argc != 0) x->defaultfilename = 0; som_read(x, s, argc, argv); } else { /* create a new som */ som_makenewsom(x, s, argc, argv); } return (x); } static void som_setup(void) { som_class = class_new(gensym("ann_som"), (t_newmethod)som_new, (t_method)som_free, sizeof(t_som), 0, A_GIMME, 0); class_addlist(som_class, som_list); class_addbang(som_class, som_bang); class_addmethod(som_class, (t_method)som_makenewsom, gensym("new"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_init, gensym("init"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_cinit, gensym("cinit"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_learn, gensym("learn"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_neighbour, gensym("neighbour"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_train, gensym("train"), 0); class_addmethod(som_class, (t_method)som_test, gensym("test"), 0); class_addmethod(som_class, (t_method)som_rule, gensym("rule"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_read, gensym("read"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_write, gensym("write"), A_GIMME, 0); class_addmethod(som_class, (t_method)som_dump, gensym("dump"), A_FLOAT, 0); class_addmethod(som_class, (t_method)som_print, gensym("print"), 0); class_addmethod(som_class, (t_method)som_help, gensym("help"), 0); class_sethelpsymbol(som_class, gensym("som")); } void ann_som_setup(void) { som_setup(); }