/* ann_td : Time Delay Neural Networks for PD by Davide Morelli - info@davidemorelli.it - http://www.davidemorelli.it this software is simply an interface for FANN classes http://fann.sourceforge.net/ FANN is obviously needed for compilation use 1.2 version only this software is licensed under the GNU General Public License */ #include <stdio.h> #include <string.h> #include "m_pd.h" #include "fann.h" #ifndef VERSION #define VERSION "0.2" #endif #ifndef __DATE__ #define __DATE__ "" #endif #define TRAIN 0 #define RUN 1 #define MAXINPUT 1024 #define MAXOUTPUT 256 static t_class *ann_td_class; typedef struct _ann_td { t_object x_obj; struct fann *ann; int mode; // 0 = training, 1 = running t_symbol *filename; // name of the file where this ann is saved t_symbol *filenametrain; // name of the file with training data float desired_error; unsigned int max_iterations; unsigned int iterations_between_reports; unsigned int frames; unsigned int num_input; t_float *inputs; unsigned int ins_frames_set; t_outlet *l_out, *f_out; } t_ann_td; static void ann_td_help(t_ann_td *x) { post(""); post("ann_td:time delay neural networks for PD"); post("ann_td:Davide Morelli - info@davidemorelli.it - (c)2005"); post("ann_td:create or load an ann, train it and run it passing a list with inputs to the inlet, nn will give a list of float as output"); post("ann_td:main commands: create, filename, load, save, train-on-file, run"); post("ann_td:see help-nn.pd for details on commands and usage"); post("ann_td:this is an interface to FANN"); } static void ann_td_deallocate_inputs(t_ann_td *x) { if (x->inputs != 0) { freebytes(x->inputs, sizeof(x->inputs)); x->inputs = 0; } } static void ann_td_allocate_inputs(t_ann_td *x) { unsigned int i; ann_td_deallocate_inputs(x); // allocate space for inputs array x->inputs = (t_float *)getbytes((x->frames) * (x->num_input) * sizeof(t_float)); for (i=0; i<(x->frames * x->num_input); i++) x->inputs[i]=0.f; } static void ann_td_createFann(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { unsigned int num_input = 2; unsigned int num_output = 1; unsigned int num_layers = 3; unsigned int num_neurons_hidden = 3; float connection_rate = 1; float learning_rate = (float)0.7; if (argc<3) { error("you must provide at least num_input, num_output amd frames number"); return; } if (argc>0) num_input = atom_getint(argv++); if (argc>1) num_output = atom_getint(argv++); if (argc>2) { x->frames = atom_getint(argv++); x->ins_frames_set=1; } if (argc>3) num_layers = atom_getint(argv++); if (argc>4) num_neurons_hidden = atom_getint(argv++); if (argc>5) connection_rate = atom_getfloat(argv++); if (argc>6) learning_rate = atom_getfloat(argv++); if ((num_input * x->frames)>MAXINPUT) { error("too many inputs, maximum allowed is %f", MAXINPUT/x->frames); return; } if (num_output>MAXOUTPUT) { error("too many outputs, maximum allowed is MAXOUTPUT"); return; } x->ann = fann_create(connection_rate, learning_rate, num_layers, (num_input*x->frames), num_neurons_hidden, num_output); fann_set_activation_function_hidden(x->ann, FANN_SIGMOID_SYMMETRIC); fann_set_activation_function_output(x->ann, FANN_SIGMOID_SYMMETRIC); ann_td_allocate_inputs(x); if (x->ann == 0) { error("error creating the ann"); } else { post("ann_td:created ann with:"); post("num_input = %i", num_input); post("num_output = %i", num_output); post("frames = %i", x->frames); post("num_layers = %i", num_layers); post("num_neurons_hidden = %i", num_neurons_hidden); post("connection_rate = %f", connection_rate); post("learning_rate = %f", learning_rate); } } static void ann_td_print_status(t_ann_td *x) { if (x->mode == TRAIN) post("ann_td:training"); else post("ann_td:running"); } static void ann_td_train(t_ann_td *x) { x->mode=TRAIN; if (x->ann == 0) { error("ann not initialized"); return; } fann_reset_MSE(x->ann); ann_td_print_status(x); } static void ann_td_run(t_ann_td *x) { x->mode=RUN; ann_td_print_status(x); } static void ann_td_set_mode(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { if (argc<1) { error("usage: setmode 0/1: 0 for training, 1 for running"); } else { x->mode = atom_getint(argv++); ann_td_print_status(x); } } static void ann_td_train_on_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { if (x->ann == 0) { error("ann not initialized"); return; } if (argc<1) { error("you must specify the filename with training data"); return; } else { x->filenametrain = atom_gensym(argv); } //post("nn: starting training on file %s, please be patient and wait for my next message (it could take severeal minutes to complete training)", x->filenametrain->s_name); fann_train_on_file(x->ann, x->filenametrain->s_name, x->max_iterations, x->iterations_between_reports, x->desired_error); post("ann_td: finished training on file %s", x->filenametrain->s_name); } static void ann_td_set_desired_error(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { float desired_error = (float)0.001; if (0<argc) { desired_error = atom_getfloat(argv); x->desired_error = desired_error; post("ann_td:desired_error set to %f", x->desired_error); } else { error("you must pass me a float"); } } static void ann_td_set_max_iterations(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { unsigned int max_iterations = 500000; if (argc>0) { max_iterations = atom_getint(argv); x->max_iterations = max_iterations; post("ann_td:max_iterations set to %i", x->max_iterations); } else { error("you must pass me an int"); } } static void ann_td_set_iterations_between_reports(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { unsigned int iterations_between_reports = 1000; if (argc>0) { iterations_between_reports = atom_getint(argv); x->iterations_between_reports = iterations_between_reports; post("ann_td:iterations_between_reports set to %i", x->iterations_between_reports); } else { error("you must pass me an int"); } } static void ann_td_scale_inputs(t_ann_td *x) { unsigned int j; unsigned int k; for(j = (x->frames - 1); j>0; j--) { // scorro la lista all'indietro for (k=0; k < x->num_input; k++) { // scalo i valori dei frames x->inputs[(x->num_input) * j + k]=x->inputs[(x->num_input) * (j-1) + k]; } } } // run the ann using floats in list passed to the inlet as input values // and send result to outlet as list of float static void ann_td_run_the_net(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { int i=0; unsigned j=0; //fann_type input[MAXINPUT]; fann_type *calc_out; t_atom lista[MAXOUTPUT]; int quanti; float valoreTMP; if (x->ann == 0) { error("ann not initialized"); return; } if (x->ins_frames_set==0) { error("num_inputs and frames not set"); return; } if (argc < (int) x->num_input) { error("insufficient inputs"); return; } quanti = x->ann->num_output; ann_td_scale_inputs(x); // fill output array with zeros for (i=0; i<MAXOUTPUT; i++) { SETFLOAT(lista + i,0); } // fill input array with actual data sent to inlet for (j=0; j < x->num_input ;j++) { //input[j] = atom_getfloat(argv++); x->inputs[j] = atom_getfloat(argv++); } // run the ann //calc_out = fann_run(x->ann, input); calc_out = fann_run(x->ann, x->inputs); // fill the output array with result from ann for (i=0;i<quanti;i++) { valoreTMP = calc_out[i]; //post("calc_out[%i]=%f", i, calc_out[i]); SETFLOAT(lista+i, valoreTMP); } // send output array to outlet outlet_anything(x->l_out, gensym("list") , quanti, lista); } static void ann_td_train_on_the_fly(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { int i=0; unsigned int j=0; fann_type input_merged[MAXINPUT]; fann_type output[MAXOUTPUT]; //fann_type *calcMSE; //t_atom lista[MAXOUTPUT]; float mse; if (x->ann == 0) { error("ann not initialized"); return; } if ((x->num_input + x->ann->num_output) > (unsigned int) argc) { error("insufficient number of arguments passed, in training mode you must prive me a list with (num_input + num_output) floats"); return; } // fill input array with zeros for (i=0; i<MAXINPUT; i++) { input_merged[i]=0; } // fill input array with zeros for (i=0; i<MAXOUTPUT; i++) { output[i]=0; } ann_td_scale_inputs(x); // fill input array with actual data sent to inlet for (j = 0; j < x->num_input; j++) { input_merged[j] = atom_getfloat(argv++); } for (j = x->num_input; j < (x->num_input * x->frames); j++) { input_merged[j] = x->inputs[j]; } for (j = 0; j < (x->ann->num_output);j++) { output[j] = atom_getfloat(argv++); } //fann_reset_MSE(x->ann); fann_train(x->ann, input_merged, output); mse = fann_get_MSE(x->ann); outlet_float(x->f_out, mse); } static void ann_td_manage_list(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { if (x->mode) ann_td_run_the_net(x, sl, argc, argv); else { ann_td_train_on_the_fly(x, sl, argc, argv); } } static void ann_td_set_filename(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { if (argc>0) { x->filename = atom_gensym(argv); } else { error("you must specify the filename"); } post("nn:filename set to %s", x->filename->s_name); } static void ann_td_load_ann_from_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { if (x->ins_frames_set==0) { error("set num_input and frames with [inputs_frames int int("); error("I won't load without num_input and frames set"); return; } if (argc>0) { x->filename = atom_gensym(argv); } x->ann = fann_create_from_file(x->filename->s_name); if (x->ann == 0) error("error opening %s", x->filename->s_name); else post("nn:ann loaded fom file %s", x->filename->s_name); ann_td_allocate_inputs(x); } static void ann_td_save_ann_to_file(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { if (argc>0) { x->filename = atom_gensym(argv); } if (x->ann == 0) { error("ann is not initialized"); } else { fann_save(x->ann, x->filename->s_name); post("nn:ann saved in file %s", x->filename->s_name); } } // functions for training algo: static void ann_td_set_FANN_TRAIN_INCREMENTAL(t_ann_td *x) { if (x->ann == 0) { error("ann is not initialized"); } else { fann_set_training_algorithm(x->ann, FANN_TRAIN_INCREMENTAL); post("nn:training algorithm set to FANN_TRAIN_INCREMENTAL"); } } static void ann_td_set_FANN_TRAIN_BATCH(t_ann_td *x) { if (x->ann == 0) { error("ann is not initialized"); } else { fann_set_training_algorithm(x->ann, FANN_TRAIN_BATCH); post("nn:training algorithm set to FANN_TRAIN_BATCH"); } } static void ann_td_set_FANN_TRAIN_RPROP(t_ann_td *x) { if (x->ann == 0) { error("ann is not initialized"); } else { fann_set_training_algorithm(x->ann, FANN_TRAIN_RPROP); post("nn:training algorithm set to FANN_TRAIN_RPROP"); } } static void ann_td_set_FANN_TRAIN_QUICKPROP(t_ann_td *x) { if (x->ann == 0) { error("ann is not initialized"); } else { fann_set_training_algorithm(x->ann, FANN_TRAIN_QUICKPROP); post("nn:training algorithm set to FANN_TRAIN_QUICKPROP"); } } static void ann_td_set_activation_function_output(t_ann_td *x, t_symbol *sl, int argc, t_atom *argv) { t_symbol *parametro = 0; int funzione = 0; if (x->ann == 0) { error("ann not initialized"); return; } if (argc>0) { parametro = atom_gensym(argv); if (strcmp(parametro->s_name, "FANN_THRESHOLD")==0) funzione = FANN_THRESHOLD; if (strcmp(parametro->s_name, "FANN_THRESHOLD_SYMMETRIC")==0) funzione = FANN_THRESHOLD_SYMMETRIC; if (strcmp(parametro->s_name, "FANN_LINEAR")==0) funzione = FANN_LINEAR; if (strcmp(parametro->s_name, "FANN_SIGMOID")==0) funzione = FANN_SIGMOID; if (strcmp(parametro->s_name, "FANN_SIGMOID_STEPWISE")==0) funzione = FANN_SIGMOID_STEPWISE; if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC")==0) funzione = FANN_SIGMOID_SYMMETRIC; if (strcmp(parametro->s_name, "FANN_SIGMOID_SYMMETRIC_STEPWISE")==0) funzione = FANN_SIGMOID_SYMMETRIC_STEPWISE; fann_set_activation_function_output(x->ann, funzione); } else { error("you must specify the activation function"); } post("nn:activation function set to %s (%i)", parametro->s_name, funzione); } static void ann_td_print_ann_details(t_ann_td *x) { if (x->ann == 0) { post("ann_td:ann is not initialized"); } else { post("follows a description of the current ann:"); post("num_input=%i", x->ann->num_input); post("num_output=%i", x->ann->num_output); post("learning_rate=%f", x->ann->learning_rate); post("connection_rate=%f", x->ann->connection_rate); post("total_neurons=%i", x->ann->total_neurons); post("total_connections=%i", x->ann->total_connections); post("last error=%i", x->ann->errstr); if (x->filename == 0) { post("filename not set"); } else { post("filename=%s", x->filename->s_name); } } } static void ann_td_set_num_input_frames(t_ann_td *x, t_floatarg ins, t_floatarg frames) { x->num_input = ins; x->frames = frames; x->ins_frames_set=1; } static void *ann_td_new(t_symbol *s, int argc, t_atom *argv) { t_ann_td *x = (t_ann_td *)pd_new(ann_td_class); x->l_out = outlet_new(&x->x_obj, &s_list); x->f_out = outlet_new(&x->x_obj, &s_float); x->desired_error = (float)0.001; x->max_iterations = 500000; x->iterations_between_reports = 1000; x->mode=RUN; x->ins_frames_set=0; if (argc<2) { error("2 arguments needed: num_input and frames. filename optional"); return (void *)x; } if (argc>0) { x->num_input = atom_getint(argv++); } if (argc>1) { x->frames = atom_getint(argv++); x->ins_frames_set=1; ann_td_allocate_inputs(x); } if (argc>2) { x->filename = atom_gensym(argv); ann_td_load_ann_from_file(x, NULL , 0, NULL); } return (void *)x; } // free resources static void ann_td_free(t_ann_td *x) { struct fann *ann = x->ann; fann_destroy(ann); ann_td_deallocate_inputs(x); // TODO: free other resources! } void ann_td_setup(void) { post(""); post("ann_td: time delay neural nets for PD"); post("version: "VERSION""); post("compiled: "__DATE__); post("author: Davide Morelli"); post("contact: info@davidemorelli.it www.davidemorelli.it"); ann_td_class = class_new(gensym("ann_td"), (t_newmethod)ann_td_new, (t_method)ann_td_free, sizeof(t_ann_td), CLASS_DEFAULT, A_GIMME, 0); // general.. class_addmethod(ann_td_class, (t_method)ann_td_help, gensym("help"), 0); class_addmethod(ann_td_class, (t_method)ann_td_createFann, gensym("create"), A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_train, gensym("train"), 0); class_addmethod(ann_td_class, (t_method)ann_td_run, gensym("run"), 0); class_addmethod(ann_td_class, (t_method)ann_td_set_mode, gensym("setmode"), A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_train_on_file, gensym("train-on-file"), A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_manage_list, gensym("data"), A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_set_filename, gensym("filename"), A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_load_ann_from_file, gensym("load"),A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_save_ann_to_file, gensym("save"),A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_print_ann_details, gensym("details"), 0); // change training parameters class_addmethod(ann_td_class, (t_method)ann_td_set_desired_error, gensym("desired_error"),A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_set_max_iterations, gensym("max_iterations"),A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_set_iterations_between_reports, gensym("iterations_between_reports"),A_GIMME, 0); // change training and activation algorithms class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_INCREMENTAL, gensym("FANN_TRAIN_INCREMENTAL"), 0); class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_BATCH, gensym("FANN_TRAIN_BATCH"), 0); class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_RPROP, gensym("FANN_TRAIN_RPROP"), 0); class_addmethod(ann_td_class, (t_method)ann_td_set_FANN_TRAIN_QUICKPROP, gensym("FANN_TRAIN_QUICKPROP"), 0); class_addmethod(ann_td_class, (t_method)ann_td_set_activation_function_output, gensym("set_activation_function_output"),A_GIMME, 0); class_addmethod(ann_td_class, (t_method)ann_td_set_num_input_frames, gensym("inputs_frames"),A_DEFFLOAT, A_DEFFLOAT, 0); // the most important one: running the ann class_addlist(ann_td_class, (t_method)ann_td_manage_list); }