aboutsummaryrefslogtreecommitdiff
path: root/helps/ann_td-help.pd
blob: 997e19e21da3973de99fb2454ff838f11839a81f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#N canvas 117 9 858 468 12;
#N canvas 445 134 647 348 creation 0;
#X obj 52 235 outlet;
#X text 246 38 specifying all;
#X text 159 216 TIP:don't set the layers param too high;
#X msg 49 10 create 2 1 5;
#X text 175 6 create with 2 inputs \, 1 output and 5 frames;
#X msg 59 38 create 2 1 5 3 3 1 0.7;
#X text 159 179 params: num_input \, num_output \, frames \, num_layers
\, num_neurons_hidden \, connection_rate \, learning_rate;
#N canvas 218 152 650 413 what 0;
#X text 37 134 you pass [0 0.1] to ann_tdnn;
#X text 34 152 internally now there is this array: [0 0.1 0 0 0 0]
;
#X text 38 196 next input is [0.2 1];
#X text 36 211 internally now there is this array: [0.2 1 0 0.1 0 0]
;
#X text 37 255 next input is [0.3 0.4];
#X text 35 270 internally now there is this array: [0.3 0.4 0.2 1 0
0.1];
#X text 36 317 next input is [0.7 0];
#X text 34 332 internally now there is this array: [0.7 0 0.3 0.4 0.2
1];
#X text 35 168 a normal ann_mlp is run with this inputs;
#X text 38 225 a normal ann_mlp is run with this inputs;
#X text 33 284 a normal ann_mlp is run with this inputs;
#X text 33 347 a normal ann_mlp is run with this inputs;
#X text 12 139 1);
#X text 14 197 2);
#X text 15 258 3);
#X text 13 319 4);
#X text 33 4 this implementation od tdnn is simply a normal ann_mlp
with num_input*frame inputs and num_output outputs. ann_tdnn simply
helps managing the delay \, frames and buffers.;
#X text 65 385 ...and so on...;
#X text 34 64 frames can be seen as the delay feedback: how many times
an input is internally held in the input array;
#X text 35 104 eg: 2 inputs 3 frames = internally 6 inputs;
#X restore 155 109 pd what frames are?;
#X connect 3 0 0 0;
#X connect 5 0 0 0;
#X restore 93 68 pd creation examples;
#N canvas 136 60 728 356 run 0;
#X obj 90 219 outlet;
#X msg 123 69 0 1;
#X msg 124 92 1 0;
#X msg 125 115 1 1;
#X msg 126 140 0 0;
#X text 40 17 now you can run your nn passing it a list with inputs
;
#X text 169 70 send a list of data and watch the console for output
;
#X text 39 35 the output is sent as a list of float;
#X text 184 134 these inputs are good for a nn like the one in example1
directory;
#X connect 1 0 0 0;
#X connect 2 0 0 0;
#X connect 3 0 0 0;
#X connect 4 0 0 0;
#X restore 107 180 pd run the net;
#N canvas 0 0 619 610 other 0;
#X obj 43 401 outlet;
#X msg 102 37 train;
#X msg 103 63 run;
#X msg 152 37 setmode 0;
#X msg 153 63 setmode 1;
#X text 249 40 set training/running mode;
#X text 247 63 training mode currently not implemented;
#N canvas 265 255 690 335 training 0;
#X obj 71 288 outlet;
#X msg 82 195 FANN_TRAIN_INCREMENTAL;
#X msg 82 216 FANN_TRAIN_BATCH;
#X msg 81 238 FANN_TRAIN_RPROP;
#X msg 81 258 FANN_TRAIN_QUICKPROP;
#X text 40 28 you can set the training algorithm simply sending a message
with the name of the algorithm chosen. possible values are: FANN_TRAIN_INCREMENTAL
FANN_TRAIN_BATCH FANN_TRAIN_RPROP FANN_TRAIN_QUICKPROP the default
is: FANN_TRAIN_RPROP see the FANN manual for details on each algorithm:
http://fann.sourceforge.net/html/r1996.html;
#X connect 1 0 0 0;
#X connect 2 0 0 0;
#X connect 3 0 0 0;
#X connect 4 0 0 0;
#X restore 150 153 pd training algorithm;
#X text 360 175 some advanced param;
#N canvas 371 92 698 395 training 0;
#X obj 52 230 outlet;
#X msg 69 118 desired_error 0.01;
#X msg 79 146 max_iterations 500000;
#X msg 90 178 iterations_between_reports 1000;
#X text 58 28 you can change training parameters. see FANN manual for
details (http://fann.sourceforge.net);
#X connect 1 0 0 0;
#X connect 2 0 0 0;
#X connect 3 0 0 0;
#X restore 151 179 pd training params;
#N canvas 371 92 694 391 activation 0;
#X obj 49 335 outlet;
#X text 40 28 you can set ti output activation algorithm passing a
message to nn. see the FANN manual for description of the algorithms
;
#X msg 69 118 set_activation_function_output FANN_THRESHOLD;
#X msg 83 139 set_activation_function_output FANN_THRESHOLD_SYMMETRIC
;
#X msg 95 163 set_activation_function_output FANN_LINEAR;
#X msg 98 184 set_activation_function_output FANN_SIGMOID;
#X msg 106 206 set_activation_function_output FANN_SIGMOID_STEPWISE
;
#X msg 108 233 set_activation_function_output FANN_SIGMOID_SYMMETRIC
;
#X msg 115 256 set_activation_function_output FANN_SIGMOID_SYMMETRIC_STEPWISE
;
#X connect 2 0 0 0;
#X connect 3 0 0 0;
#X connect 4 0 0 0;
#X connect 5 0 0 0;
#X connect 6 0 0 0;
#X connect 7 0 0 0;
#X connect 8 0 0 0;
#X restore 150 203 pd activation algorithm;
#X msg 151 287 details;
#X text 229 285 details on the current nn;
#X msg 145 333 help;
#X connect 1 0 0 0;
#X connect 2 0 0 0;
#X connect 3 0 0 0;
#X connect 4 0 0 0;
#X connect 7 0 0 0;
#X connect 9 0 0 0;
#X connect 10 0 0 0;
#X connect 11 0 0 0;
#X connect 13 0 0 0;
#X restore 128 258 pd other commands;
#N canvas 0 0 665 525 save 0;
#X obj 39 264 outlet;
#X msg 64 20 filename test.net;
#X msg 66 46 save;
#X msg 82 103 load;
#X text 221 19 set the filename;
#X text 214 42 save the net to the file;
#X text 138 104 you can reload it too;
#X text 144 182 nn can be loaded from a file at creation time simply
passing the filename as argument;
#X msg 68 71 save test.net;
#X msg 93 130 load test.net;
#X text 144 217 like [ann_td num_inputs frames filename];
#X connect 1 0 0 0;
#X connect 2 0 0 0;
#X connect 3 0 0 0;
#X connect 8 0 0 0;
#X connect 9 0 0 0;
#X restore 118 218 pd save the net;
#X text 270 66 create a nn;
#X text 244 179 run your net;
#X text 258 215 save your net;
#N canvas 0 0 712 542 tips 0;
#X text 51 84 for better performances inputs value should be normalized
\, all input should have the same range (if one input has a larger
range it will be more "important"). the range of each input should
be 0 centered. so [-1 \, 1] is good [-2 \, 2] is good \, [0 \, 1] not
so good [1 \, 2] is bad. the range sould not be too small ([-0.1 \,
0.1] is bad).;
#X text 41 19 TIPS;
#X text 41 56 inputs;
#X text 39 211 outputs;
#X text 50 235 each class of outputs should have its own output value:
don't use the same output for 2 meanings \, use 2 outputs intead \,
1 for each.;
#X restore 167 285 pd tips;
#X text 272 371 an interface to fann classes (http://fann.sourceforge.net)
;
#X text 274 389 by Davide Morelli - info@davidemorelli.it;
#N canvas 227 183 580 411 train 0;
#X obj 32 241 outlet;
#N canvas 100 44 892 558 train 0;
#X obj 57 397 outlet;
#X msg 60 31 train;
#X text 126 33 1- set the train mode;
#X text 116 81 2- build a list with inputs and desired output;
#X text 139 101 be shure you provide the correct numbers of inputs
and outputs;
#X obj 168 202 pack s f f f;
#X obj 197 248 pack f f f;
#X obj 168 225 unpack s f f f;
#X msg 192 374 run;
#X obj 198 170 tgl 15 0 empty empty in1 0 -6 0 8 -262144 -1 -1 0 1
;
#X obj 228 170 tgl 15 0 empty empty in2 0 -6 0 8 -262144 -1 -1 0 1
;
#X obj 259 170 tgl 15 0 empty empty output 0 -6 0 8 -262144 -1 -1 0
1;
#X obj 148 169 bng 15 250 50 0 empty empty train! 0 -6 0 8 -262144
-1 -1;
#X text 299 183 set inputs and output value \, then send the list clicking
on the "train!" bang;
#X text 229 374 3- when you are ready switch again to run mode before
exiting;
#X text 311 308 NOTE2: while training the right outlet gives you the
mean square error after each training pattern.;
#X msg 316 278 create 2 1 5;
#X text 315 226 NOTE1: before training with this example you should
have created a nn with 2 ins and 1 out and 5 frames with a command
like:;
#X connect 1 0 0 0;
#X connect 5 0 7 0;
#X connect 6 0 0 0;
#X connect 7 1 6 0;
#X connect 7 2 6 1;
#X connect 7 3 6 2;
#X connect 8 0 0 0;
#X connect 9 0 5 1;
#X connect 10 0 5 2;
#X connect 11 0 5 3;
#X connect 12 0 5 0;
#X connect 16 0 0 0;
#X restore 68 50 pd train it on the fly;
#X text 62 5 there are 2 ways to train your net;
#X text 253 47 on the fly is simpler;
#X text 86 128 with a trainfile the net could be more accurate;
#X msg 89 149 train-on-file test.txt;
#X connect 1 0 0 0;
#X connect 5 0 0 0;
#X restore 115 119 pd train;
#X text 190 118 train a nn;
#X obj 113 360 print mse;
#X obj 54 391 print out;
#X text 150 315 2 args needed: num_inputs and frames;
#X text 148 331 see [pd creation examples] for details;
#X obj 33 319 ann_td 2 5;
#X text 9 2 ann_td: time delay neural networks in pd;
#X connect 0 0 16 0;
#X connect 1 0 16 0;
#X connect 2 0 16 0;
#X connect 3 0 16 0;
#X connect 10 0 16 0;
#X connect 16 0 13 0;
#X connect 16 1 12 0;