/* (c) 2006 Ch. Klippel * this software is gpl'ed software, read the file "LICENSE.txt" for details */ #include "m_pd.h" #include "math.h" /* -------------------------- bassemu~ ------------------------------ */ static t_class *bassemu_class; #define VER_MAJ 0 #define VER_MIN 3 #define PI_2 6.28218530717958647692 #define sinfact (2. * 6.28328) typedef struct _bassemu { t_object x_obj; float vco_inc, vco_actinc; float current_wave, ideal_wave, delta, vco_count; float pw; int vco_type, hpf; float glide; float thisnote; float tune; float vcf_cutoff, vcf_envmod, vcf_envdecay, vcf_reso, vcf_rescoeff; float vcf_a, vcf_b, vcf_c, vcf_c0, vcf_d1, vcf_d2, vcf_e0, vcf_e1; int vcf_envpos; float vca_attack; float vca_decay; float vca_a; float vca_a0; int vca_mode; int limit_type; int ext_type; char ext_pre; int envinc; float decay; float pitch; float sr; float dummy; } t_bassemu; static t_int *bassemu_perform(t_int *ww) { t_bassemu *x = (t_bassemu *)(ww[1]); t_float *inbuf = (t_float *)(ww[2]); t_float *outbuf = (t_float *)(ww[3]); int n = (int)(ww[4]); float w = 0, k=0, ts=0, is=0; // only compute if needed ....... if (x->vca_mode != 2) { // begin bassemu dsp engine while(n--) { if (x->ext_type > 0) { is = (*inbuf++ * 0.48); if (is < -0.48) is = -0.48f; if (is > 0.48) is = 0.48f; } // update vcf if(x->vcf_envpos >= x->envinc) { w = x->vcf_e0 + x->vcf_c0; k = exp(-w/x->vcf_rescoeff); x->vcf_c0 *= x->vcf_envdecay; x->vcf_a = 2.0*cos(2.0*w) * k; x->vcf_b = -k*k; x->vcf_c = 1.0 - x->vcf_a - x->vcf_b; x->vcf_envpos = 0; } // update vco if (!x->glide) x->vco_actinc = x->vco_inc; // handle glide else { if (x->vco_inc > x->vco_actinc) x->vco_actinc = (x->vco_actinc + ((x->vco_inc - x->vco_actinc) / (x->glide * (x->sr/10.)) ) ); if (x->vco_inc < x->vco_actinc) x->vco_actinc = (x->vco_actinc - ((x->vco_actinc - x->vco_inc) / (x->glide * (x->sr/10.)) ) ); } // select waveform switch((int)x->vco_type) { case 0 : // sawtooth x->ideal_wave = sin(x->vco_count); x->vco_count += x->vco_actinc; break; case 1 : // rectangle if ((x->vco_count+0.5) <= x->pw) x->ideal_wave = -0.5; else x->ideal_wave = 0.5; x->vco_count += x->vco_actinc; break; case 2 : // triangle if (x->vco_count == -0.5 ) x->ideal_wave = (x->vco_count + 0.000001); else { if (x->vco_count <= 0.0 ) x->ideal_wave = (x->ideal_wave + (x->vco_actinc * 2)); else x->ideal_wave = (x->ideal_wave - (x->vco_actinc * 2)); } x->vco_count += x->vco_actinc; break; case 3 : // sine x->ideal_wave = (sin(sinfact * (x->vco_count + 0.5)) / 2); x->vco_count += (x->vco_actinc / 2.); break; default : break; } // waveform rises faster than it falls if( x->vco_count <= 0.0 ) x->current_wave = ( x->current_wave + ((x->ideal_wave - x->current_wave) * 0.95 )); else x->current_wave = ( x->current_wave + ((x->ideal_wave - x->current_wave) * 0.9 )); // recyle and end if (x->vco_count > 0.5) x->vco_count = (-0.5); // run external through VCO-HPF if(x->ext_pre) switch((int)x->ext_type) { case 1 : x->current_wave = is; break; case 2 : x->current_wave = ((x->current_wave + is) *0.5f); break; default : break; } ts = x->current_wave; // vco hpf function if( x->hpf ) { x->delta = (x->delta * x->current_wave); x->delta = (x->delta * 0.99 ); ts = ((x->delta*2)+0.5); x->delta = (x->delta - x->current_wave ); } // update vca if(!x->vca_mode) x->vca_a += (x->vca_a0 - x->vca_a) * x->vca_attack; else if(x->vca_mode == 1) { x->vca_a *= x->vca_decay; if(x->vca_a < (1/65536.0)) { x->vca_a = 0; x->vca_mode = 2; } } // mix external without filtering with VCO-HPF if(!x->ext_pre) switch((int)x->ext_type) { case 1 : ts = is; break; case 2 : ts = ((ts + is) * 0.5f); break; default : break; } // compute sample ts = x->vcf_a * x->vcf_d1 + x->vcf_b * x->vcf_d2 + x->vcf_c * ts * x->vca_a; x->vcf_d2 = x->vcf_d1; x->vcf_envpos++; x->vcf_d1 = ts; switch((int)x->limit_type) { case 1 : // hard limit if (ts > 0.999) ts = 0.999; if (ts < -0.999) ts = -0.999; *outbuf++ = ts; break; case 2 : // sine limiting *outbuf++ = sin(ts); break; default : // no limiting et al *outbuf++ = ts; break; } } } //end vcamode != 2 else while(n--) { *outbuf++ = 0.0f; } return (ww+5); } static void bassemu_dsp(t_bassemu *x, t_signal **sp) { x->sr = sp[0]->s_sr; dsp_add(bassemu_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); } static void recalc(t_bassemu *x) { x->vcf_e1 = exp(6.109 + 1.5876*(x->vcf_envmod) + 2.1553*(x->vcf_cutoff) - 1.2*(1.0-x->vcf_reso)); x->vcf_e0 = exp(5.613 - 0.8*(x->vcf_envmod) + 2.1553*(x->vcf_cutoff) - 0.7696*(1.0-x->vcf_reso)); x->vcf_e0 *=M_PI/x->sr; x->vcf_e1 *=M_PI/x->sr; x->vcf_e1 -= x->vcf_e0; x->vcf_envpos = x->envinc; } static void bassemu_note(t_bassemu *x, t_floatarg f) { // calculate note and trigger vca if(f != -1) { // note x->thisnote = x->pitch + f-57; x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.); x->vca_mode = 0; x->vcf_c0 = x->vcf_e1; x->vcf_envpos = x->envinc; } else x->vca_mode = 1; } static void bassemu_pitch(t_bassemu *x, t_floatarg f) { x->thisnote -= x->pitch; x->pitch = f; x->thisnote += x->pitch; x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.); } static void bassemu_list(t_bassemu *x, t_symbol *s, int argc, t_atom *argv) { if (argc >= 5) { // get decay if(argv[4].a_type == A_FLOAT && (atom_getfloatarg(4,argc,argv) != -1)) { // decay float d = atom_getfloatarg(4,argc,argv); x->decay = d; d = 0.2 + (2.3*d); d*=x->sr; x->vcf_envdecay = pow(0.1, 1.0/d * x->envinc); } recalc(x); } if (argc >= 4) { // get envelope modulation if(argv[3].a_type == A_FLOAT && (atom_getfloatarg(3,argc,argv) != -1)) { // envmod x->vcf_envmod = atom_getfloatarg(1,argc,argv); } recalc(x); } if (argc >= 3) { //get resonance if(argv[2].a_type == A_FLOAT && (atom_getfloatarg(2,argc,argv) != -1)) { // resonance x->vcf_reso = atom_getfloatarg(1,argc,argv); x->vcf_rescoeff = exp(-1.20 + 3.455*(x->vcf_reso)); } recalc(x); } if (argc >= 2) { // get cutoff if(argv[1].a_type == A_FLOAT && (atom_getfloatarg(1,argc,argv) != -1)) { // cutoff x->vcf_cutoff = atom_getfloatarg(1,argc,argv); } recalc(x); } if (argc >= 1) { if(argv[0].a_type = A_FLOAT && (atom_getfloatarg(0,argc,argv) != -1)) { // note x->thisnote = atom_getfloatarg(0,argc,argv)-57; x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.); x->vca_mode = 0; x->vcf_c0 = x->vcf_e1; x->vcf_envpos = x->envinc; } else x->vca_mode = 1; recalc(x); } } static void bassemu_vco(t_bassemu *x, t_floatarg f) { if ((f >= 0) && (f <= 8)) x->vco_type = f; else x->vco_type = 0; } static void bassemu_hpf(t_bassemu *x, t_floatarg f) { if ((f >= 0) && (f <= 1)) x->hpf = f; else x->hpf = 0; } static void bassemu_glide(t_bassemu *x, t_floatarg f) { if (f == 0) x->glide = 0; else x->glide = f; } static void bassemu_limit(t_bassemu *x, t_floatarg f) { if ((f >= 0) && (f <=2)) x->limit_type = f; } static void bassemu_ext(t_bassemu *x, t_floatarg f) { if ((f >= 0) && (f <=2)) { x->ext_type = f; x->ext_pre = 0; } if (f == 3) { x->ext_type = 1; x->ext_pre = 1; } if (f == 4) { x->ext_type = 2; x->ext_pre = 1; } } static void bassemu_tune(t_bassemu *x, t_floatarg f) { x->tune = f; x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.0); } static void bassemu_envinc(t_bassemu *x, t_floatarg f) { float d = x->decay; if (f >= 1) x->envinc = f; d = 0.2 + (2.3*d); d *= x->sr; x->vcf_envdecay = pow(0.1, 1.0/d * x->envinc); } static void bassemu_cutoff(t_bassemu *x, t_floatarg f) { x->vcf_cutoff = f; recalc(x); } static void bassemu_reso(t_bassemu *x, t_floatarg f) { x->vcf_reso = f; x->vcf_rescoeff = exp(-1.20 + 3.455*(x->vcf_reso)); recalc(x); } static void bassemu_envmod(t_bassemu *x, t_floatarg f) { x->vcf_envmod = f; recalc(x); } static void bassemu_decay(t_bassemu *x, t_floatarg f) { float d = f; x->decay = d; d = 0.2 + (2.3*d); d*=x->sr; x->vcf_envdecay = pow(0.1, 1.0/d * x->envinc); } static void bassemu_pw(t_bassemu *x, t_floatarg f) { x->pw = f; if (x->pw > 1.0) x->pw = 1.0; if (x->pw < 0.0) x->pw = 0.0; } static void bassemu_reset(t_bassemu *x, t_floatarg f) { x->vco_inc = 0.0f; x->vco_actinc = 0.0f; x->current_wave = 0.0f; x->ideal_wave = 0.0f; x->delta = 0.0f; x->vco_count = 0.0f; x->pw = 0.5f; x->vco_type = 0; x->hpf = 0.0f; x->glide = 0.0f; x->tune = 440.0f; x->thisnote = 0; x->vcf_cutoff = 0.0; x->vcf_envmod = 0.0; x->vcf_envdecay = 0.0; x->vcf_reso = 0.0; x->vcf_rescoeff = 0.0f; x->vcf_a = 0.0; x->vcf_b = 0.0; x->vcf_c = 0.0; x->vcf_c0 = 0.0; x->vcf_d1 = 0.0; x->vcf_d2 = 0.0; x->vcf_e0 = 0.0; x->vcf_e1 = 0.0f; x->vcf_envpos = 64; x->vca_attack = (float)(1.0f - 0.94406088f); x->vca_decay = (float)(0.99897516f); x->vca_a = 0.0f; x->vca_a0 = 0.5f; x->vca_mode = 2 ; // attack (0) / decay (1) / silent (2) mode x->limit_type = 2; x->ext_type = 0; x->ext_pre = 0; x->envinc = 64; x->decay = 0; x->pitch = 0; } static void *bassemu_new(t_symbol *s, int argc, t_atom *argv) { unsigned int numargs; t_bassemu *x = (t_bassemu *)pd_new(bassemu_class); outlet_new(&x->x_obj, gensym("signal")); bassemu_reset(x,0); x->sr = 44100.; return (x); } static void bassemu_free(t_bassemu *x) { } void bassemu_tilde_setup(void) { bassemu_class = class_new(gensym("bassemu~"), (t_newmethod)bassemu_new, (t_method)bassemu_free, sizeof(t_bassemu), CLASS_DEFAULT, A_GIMME, 0); CLASS_MAINSIGNALIN(bassemu_class, t_bassemu, dummy); class_addmethod(bassemu_class, (t_method)bassemu_dsp, gensym("dsp"), 0); class_addfloat (bassemu_class, (t_method)bassemu_note); // start/stop using a toggle class_addmethod(bassemu_class, (t_method)bassemu_list, gensym("list"), A_GIMME, 0); class_addmethod(bassemu_class, (t_method)bassemu_vco, gensym("vco"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_hpf, gensym("hpf"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_glide, gensym("glide"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_limit, gensym("limit"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_ext, gensym("ext"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_tune, gensym("tune"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_envinc,gensym("envinc"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_reset, gensym("reset"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_cutoff,gensym("cutoff"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_reso, gensym("reso"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_envmod,gensym("envmod"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_decay, gensym("decay"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_pw, gensym("pw"), A_DEFFLOAT, 0); class_addmethod(bassemu_class, (t_method)bassemu_pitch, gensym("pitch"), A_DEFFLOAT, 0); post("bassemu~: transistor bass emulation"); post("bassemu~: version %i.%i",VER_MAJ, VER_MIN); post("bassemu~: (c) 2006 Ch. Klippel - ck@mamalala.de"); post("bassemu~: this is gpl'ed software, see README for details\n"); }