/* attract1 Attractor PD External */ /* Copyright Michael McGonagle, from 'attract.java' by Julian Sprott, 2003 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "chaos.h" #define M_a0_lo -3 #define M_a0_hi 3 #define M_a1_lo -3 #define M_a1_hi 3 #define M_a2_lo -3 #define M_a2_hi 3 #define M_a3_lo -3 #define M_a3_hi 3 #define M_a4_lo -3 #define M_a4_hi 3 #define M_a5_lo -3 #define M_a5_hi 3 #define M_a0 0 #define M_a1 1 #define M_a2 2 #define M_a3 3 #define M_a4 4 #define M_a5 5 #define M_x 0 #define M_y 1 #define M_param_count 6 #define M_var_count 2 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "attract1 v0.0, by Michael McGonagle, from 'attract.java' by Julian Sprott, 2003"; t_class *attract1_class; typedef struct attract1_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double a0, a0_lo, a0_hi, a1, a1_lo, a1_hi, a2, a2_lo, a2_hi, a3, a3_lo, a3_hi, a4, a4_lo, a4_hi, a5, a5_lo, a5_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; t_outlet *outlets[M_var_count - 1]; } attract1_struct; static void calc(attract1_struct *attract1, double *vars) { double x_0, y_0; x_0 =attract1 -> a0+vars[M_x]*(attract1 -> a1+attract1 -> a2*vars[M_x]+attract1 -> a3*vars[M_y])+vars[M_y]*(attract1 -> a4+attract1 -> a5*vars[M_y]); y_0 =vars[M_x]; vars[M_x] = x_0; vars[M_y] = y_0; } // end calc static void calculate(attract1_struct *attract1) { calc(attract1, attract1 -> vars); outlet_float(attract1 -> outlets[M_y - 1], attract1 -> vars[M_y]); outlet_float(attract1 -> x_obj.ob_outlet, attract1 -> vars[M_x]); } // end calculate static void reset(attract1_struct *attract1, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { attract1 -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv); attract1 -> vars[M_y] = (double) atom_getfloatarg(M_y, argc, argv); } else { attract1 -> vars[M_x] = attract1 -> vars_init[M_x]; attract1 -> vars[M_y] = attract1 -> vars_init[M_y]; } // end if } // end reset static char *classify(attract1_struct *attract1) { static char buff[7]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((attract1 -> a0 - M_a0_lo) * (1.0 / (M_a0_hi - M_a0_lo))) * 26)]; buff[1] = c[(int) (((attract1 -> a1 - M_a1_lo) * (1.0 / (M_a1_hi - M_a1_lo))) * 26)]; buff[2] = c[(int) (((attract1 -> a2 - M_a2_lo) * (1.0 / (M_a2_hi - M_a2_lo))) * 26)]; buff[3] = c[(int) (((attract1 -> a3 - M_a3_lo) * (1.0 / (M_a3_hi - M_a3_lo))) * 26)]; buff[4] = c[(int) (((attract1 -> a4 - M_a4_lo) * (1.0 / (M_a4_hi - M_a4_lo))) * 26)]; buff[5] = c[(int) (((attract1 -> a5 - M_a5_lo) * (1.0 / (M_a5_hi - M_a5_lo))) * 26)]; buff[6] = '\0'; return buff; } static void make_results(attract1_struct *attract1) { SETFLOAT(&attract1 -> search_out[0], attract1 -> lyap_exp); SETSYMBOL(&attract1 -> search_out[1], gensym(classify(attract1))); SETFLOAT(&attract1 -> search_out[2], attract1 -> failure_ratio); SETFLOAT(&attract1 -> vars_out[M_x], attract1 -> vars[M_x]); SETFLOAT(&attract1 -> vars_out[M_y], attract1 -> vars[M_y]); SETFLOAT(&attract1 -> params_out[M_a0], attract1 -> a0); SETFLOAT(&attract1 -> params_out[M_a1], attract1 -> a1); SETFLOAT(&attract1 -> params_out[M_a2], attract1 -> a2); SETFLOAT(&attract1 -> params_out[M_a3], attract1 -> a3); SETFLOAT(&attract1 -> params_out[M_a4], attract1 -> a4); SETFLOAT(&attract1 -> params_out[M_a5], attract1 -> a5); outlet_list(attract1 -> params_outlet, gensym("list"), M_param_count, attract1 -> params_out); outlet_list(attract1 -> vars_outlet, gensym("list"), M_var_count, attract1 -> vars_out); } static void show(attract1_struct *attract1) { make_results(attract1); outlet_anything(attract1 -> search_outlet, gensym("show"), M_search_count, attract1 -> search_out); } static void param(attract1_struct *attract1, t_symbol *s, int argc, t_atom *argv) { if (argc != 6) { post("Incorrect number of arguments for attract1 fractal. Expecting 6 arguments."); return; } attract1 -> a0 = (double) atom_getfloatarg(0, argc, argv); attract1 -> a1 = (double) atom_getfloatarg(1, argc, argv); attract1 -> a2 = (double) atom_getfloatarg(2, argc, argv); attract1 -> a3 = (double) atom_getfloatarg(3, argc, argv); attract1 -> a4 = (double) atom_getfloatarg(4, argc, argv); attract1 -> a5 = (double) atom_getfloatarg(5, argc, argv); } static void seed(attract1_struct *attract1, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(attract1_struct *attract1, t_floatarg l, t_floatarg h, t_floatarg lim) { attract1 -> lyap_lo = l; attract1 -> lyap_hi = h; attract1 -> lyap_limit = (double) ((int) lim); } static void elyap(attract1_struct *attract1) { double results[M_var_count]; int i; if (lyapunov_full((void *) attract1, (t_gotfn) calc, M_var_count, attract1 -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(attract1_struct *attract1) { if (attract1 -> a0_lo < M_a0_lo) { attract1 -> a0_lo = M_a0_lo; } if (attract1 -> a0_lo > M_a0_hi) { attract1 -> a0_lo = M_a0_hi; } if (attract1 -> a0_hi < M_a0_lo) { attract1 -> a0_hi = M_a0_lo; } if (attract1 -> a0_hi > M_a0_hi) { attract1 -> a0_hi = M_a0_hi; } if (attract1 -> a1_lo < M_a1_lo) { attract1 -> a1_lo = M_a1_lo; } if (attract1 -> a1_lo > M_a1_hi) { attract1 -> a1_lo = M_a1_hi; } if (attract1 -> a1_hi < M_a1_lo) { attract1 -> a1_hi = M_a1_lo; } if (attract1 -> a1_hi > M_a1_hi) { attract1 -> a1_hi = M_a1_hi; } if (attract1 -> a2_lo < M_a2_lo) { attract1 -> a2_lo = M_a2_lo; } if (attract1 -> a2_lo > M_a2_hi) { attract1 -> a2_lo = M_a2_hi; } if (attract1 -> a2_hi < M_a2_lo) { attract1 -> a2_hi = M_a2_lo; } if (attract1 -> a2_hi > M_a2_hi) { attract1 -> a2_hi = M_a2_hi; } if (attract1 -> a3_lo < M_a3_lo) { attract1 -> a3_lo = M_a3_lo; } if (attract1 -> a3_lo > M_a3_hi) { attract1 -> a3_lo = M_a3_hi; } if (attract1 -> a3_hi < M_a3_lo) { attract1 -> a3_hi = M_a3_lo; } if (attract1 -> a3_hi > M_a3_hi) { attract1 -> a3_hi = M_a3_hi; } if (attract1 -> a4_lo < M_a4_lo) { attract1 -> a4_lo = M_a4_lo; } if (attract1 -> a4_lo > M_a4_hi) { attract1 -> a4_lo = M_a4_hi; } if (attract1 -> a4_hi < M_a4_lo) { attract1 -> a4_hi = M_a4_lo; } if (attract1 -> a4_hi > M_a4_hi) { attract1 -> a4_hi = M_a4_hi; } if (attract1 -> a5_lo < M_a5_lo) { attract1 -> a5_lo = M_a5_lo; } if (attract1 -> a5_lo > M_a5_hi) { attract1 -> a5_lo = M_a5_hi; } if (attract1 -> a5_hi < M_a5_lo) { attract1 -> a5_hi = M_a5_lo; } if (attract1 -> a5_hi > M_a5_hi) { attract1 -> a5_hi = M_a5_hi; } } static void constrain(attract1_struct *attract1, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges attract1 -> a0_lo = M_a0_lo; attract1 -> a0_hi = M_a0_hi; attract1 -> a1_lo = M_a1_lo; attract1 -> a1_hi = M_a1_hi; attract1 -> a2_lo = M_a2_lo; attract1 -> a2_hi = M_a2_hi; attract1 -> a3_lo = M_a3_lo; attract1 -> a3_hi = M_a3_hi; attract1 -> a4_lo = M_a4_lo; attract1 -> a4_hi = M_a4_hi; attract1 -> a5_lo = M_a5_lo; attract1 -> a5_hi = M_a5_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double a0_spread = ((M_a0_hi - M_a0_lo) * percent) / 2; double a1_spread = ((M_a1_hi - M_a1_lo) * percent) / 2; double a2_spread = ((M_a2_hi - M_a2_lo) * percent) / 2; double a3_spread = ((M_a3_hi - M_a3_lo) * percent) / 2; double a4_spread = ((M_a4_hi - M_a4_lo) * percent) / 2; double a5_spread = ((M_a5_hi - M_a5_lo) * percent) / 2; attract1 -> a0_lo = attract1 -> a0 - a0_spread; attract1 -> a0_hi = attract1 -> a0 + a0_spread; attract1 -> a1_lo = attract1 -> a1 - a1_spread; attract1 -> a1_hi = attract1 -> a1 + a1_spread; attract1 -> a2_lo = attract1 -> a2 - a2_spread; attract1 -> a2_hi = attract1 -> a2 + a2_spread; attract1 -> a3_lo = attract1 -> a3 - a3_spread; attract1 -> a3_hi = attract1 -> a3 + a3_spread; attract1 -> a4_lo = attract1 -> a4 - a4_spread; attract1 -> a4_hi = attract1 -> a4 + a4_spread; attract1 -> a5_lo = attract1 -> a5 - a5_spread; attract1 -> a5_hi = attract1 -> a5 + a5_spread; limiter(attract1); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for attract1 constraints, requires 12 values, got %d", argc); return; } attract1 -> a0_lo = atom_getfloat(arg++); attract1 -> a0_hi = atom_getfloat(arg++); attract1 -> a1_lo = atom_getfloat(arg++); attract1 -> a1_hi = atom_getfloat(arg++); attract1 -> a2_lo = atom_getfloat(arg++); attract1 -> a2_hi = atom_getfloat(arg++); attract1 -> a3_lo = atom_getfloat(arg++); attract1 -> a3_hi = atom_getfloat(arg++); attract1 -> a4_lo = atom_getfloat(arg++); attract1 -> a4_hi = atom_getfloat(arg++); attract1 -> a5_lo = atom_getfloat(arg++); attract1 -> a5_hi = atom_getfloat(arg++); limiter(attract1); } static void search(attract1_struct *attract1, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = attract1 -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_a0 = attract1 -> a0; double temp_a1 = attract1 -> a1; double temp_a2 = attract1 -> a2; double temp_a3 = attract1 -> a3; double temp_a4 = attract1 -> a4; double temp_a5 = attract1 -> a5; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], attract1 -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: attract1 -> a0 = (drand48() * (attract1 -> a0_hi - attract1 -> a0_lo)) + attract1 -> a0_lo; attract1 -> a1 = (drand48() * (attract1 -> a1_hi - attract1 -> a1_lo)) + attract1 -> a1_lo; attract1 -> a2 = (drand48() * (attract1 -> a2_hi - attract1 -> a2_lo)) + attract1 -> a2_lo; attract1 -> a3 = (drand48() * (attract1 -> a3_hi - attract1 -> a3_lo)) + attract1 -> a3_lo; attract1 -> a4 = (drand48() * (attract1 -> a4_hi - attract1 -> a4_lo)) + attract1 -> a4_lo; attract1 -> a5 = (drand48() * (attract1 -> a5_hi - attract1 -> a5_lo)) + attract1 -> a5_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(attract1, NULL, argc, vars); do { calc(attract1, attract1 -> vars); } while(jump--); attract1 -> lyap_exp = lyapunov((void *) attract1, (t_gotfn) calc, M_var_count, (double *) attract1 -> vars); if (isnan(attract1 -> lyap_exp)) { not_found = 1; } if (attract1 -> lyap_exp < attract1 -> lyap_lo || attract1 -> lyap_exp > attract1 -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(attract1, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) attract1 -> lyap_limit); post("Try using wider constraints."); attract1 -> a0 = temp_a0; attract1 -> a1 = temp_a1; attract1 -> a2 = temp_a2; attract1 -> a3 = temp_a3; attract1 -> a4 = temp_a4; attract1 -> a5 = temp_a5; outlet_anything(attract1 -> search_outlet, gensym("invalid"), 0, NULL); } else { attract1 -> failure_ratio = (attract1 -> lyap_limit - not_expired) / attract1 -> lyap_limit; make_results(attract1); outlet_anything(attract1 -> search_outlet, gensym("search"), M_search_count, attract1 -> search_out); } } void *attract1_new(t_symbol *s, int argc, t_atom *argv) { attract1_struct *attract1 = (attract1_struct *) pd_new(attract1_class); if (attract1 != NULL) { outlet_new(&attract1 -> x_obj, &s_float); attract1 -> outlets[0] = outlet_new(&attract1 -> x_obj, &s_float); attract1 -> search_outlet = outlet_new(&attract1 -> x_obj, &s_list); attract1 -> vars_outlet = outlet_new(&attract1 -> x_obj, &s_list); attract1 -> params_outlet = outlet_new(&attract1 -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { attract1 -> vars_init[M_x] = attract1 -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv); attract1 -> vars_init[M_y] = attract1 -> vars[M_y] = (double) atom_getfloatarg(1, argc, argv); attract1 -> a0 = (double) atom_getfloatarg(2, argc, argv); attract1 -> a1 = (double) atom_getfloatarg(3, argc, argv); attract1 -> a2 = (double) atom_getfloatarg(4, argc, argv); attract1 -> a3 = (double) atom_getfloatarg(5, argc, argv); attract1 -> a4 = (double) atom_getfloatarg(6, argc, argv); attract1 -> a5 = (double) atom_getfloatarg(7, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for attract1 fractal. Expecting 8 arguments."); } attract1 -> vars_init[M_x] = 0; attract1 -> vars_init[M_y] = 0; attract1 -> a0 = 1; attract1 -> a1 = 1; attract1 -> a2 = 1; attract1 -> a3 = 1; attract1 -> a4 = 1; attract1 -> a5 = 1; } constrain(attract1, NULL, 0, NULL); lyap(attract1, -1000000.0, 1000000.0, M_failure_limit); } return (void *)attract1; } void attract1_setup(void) { attract1_class = class_new(gensym("attract1"), (t_newmethod) attract1_new, 0, sizeof(attract1_struct), 0, A_GIMME, 0); class_addbang(attract1_class, (t_method) calculate); class_addmethod(attract1_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(attract1_class, (t_method) show, gensym("show"), 0); class_addmethod(attract1_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(attract1_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(attract1_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(attract1_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(attract1_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(attract1_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); }