/* base3 Attractor PD External */ /* Copyright Michael McGonagle, 2003 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "chaos.h" #define M_a_lo 0 #define M_a_hi 3 #define M_b_lo 0.001 #define M_b_hi 2.6667 #define M_a 0 #define M_b 1 #define M_x 0 #define M_param_count 2 #define M_var_count 1 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "base3 v0.0, by Michael McGonagle, 2003"; t_class *base3_class; typedef struct base3_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double a, a_lo, a_hi, b, b_lo, b_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; } base3_struct; static void calc(base3_struct *base3, double *vars) { double x_0; x_0 =base3 -> a*sin(pow(vars[M_x],base3 -> b)); vars[M_x] = x_0; } // end calc static void calculate(base3_struct *base3) { calc(base3, base3 -> vars); outlet_float(base3 -> x_obj.ob_outlet, base3 -> vars[M_x]); } // end calculate static void reset(base3_struct *base3, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { base3 -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv); } else { base3 -> vars[M_x] = base3 -> vars_init[M_x]; } // end if } // end reset static char *classify(base3_struct *base3) { static char buff[3]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((base3 -> a - M_a_lo) * (1.0 / (M_a_hi - M_a_lo))) * 26)]; buff[1] = c[(int) (((base3 -> b - M_b_lo) * (1.0 / (M_b_hi - M_b_lo))) * 26)]; buff[2] = '\0'; return buff; } static void make_results(base3_struct *base3) { SETFLOAT(&base3 -> search_out[0], base3 -> lyap_exp); SETSYMBOL(&base3 -> search_out[1], gensym(classify(base3))); SETFLOAT(&base3 -> search_out[2], base3 -> failure_ratio); SETFLOAT(&base3 -> vars_out[M_x], base3 -> vars[M_x]); SETFLOAT(&base3 -> params_out[M_a], base3 -> a); SETFLOAT(&base3 -> params_out[M_b], base3 -> b); outlet_list(base3 -> params_outlet, gensym("list"), M_param_count, base3 -> params_out); outlet_list(base3 -> vars_outlet, gensym("list"), M_var_count, base3 -> vars_out); } static void show(base3_struct *base3) { make_results(base3); outlet_anything(base3 -> search_outlet, gensym("show"), M_search_count, base3 -> search_out); } static void param(base3_struct *base3, t_symbol *s, int argc, t_atom *argv) { if (argc != 2) { post("Incorrect number of arguments for base3 fractal. Expecting 2 arguments."); return; } base3 -> a = (double) atom_getfloatarg(0, argc, argv); base3 -> b = (double) atom_getfloatarg(1, argc, argv); } static void seed(base3_struct *base3, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(base3_struct *base3, t_floatarg l, t_floatarg h, t_floatarg lim) { base3 -> lyap_lo = l; base3 -> lyap_hi = h; base3 -> lyap_limit = (double) ((int) lim); } static void elyap(base3_struct *base3) { double results[M_var_count]; int i; if (lyapunov_full((void *) base3, (t_gotfn) calc, M_var_count, base3 -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(base3_struct *base3) { if (base3 -> a_lo < M_a_lo) { base3 -> a_lo = M_a_lo; } if (base3 -> a_lo > M_a_hi) { base3 -> a_lo = M_a_hi; } if (base3 -> a_hi < M_a_lo) { base3 -> a_hi = M_a_lo; } if (base3 -> a_hi > M_a_hi) { base3 -> a_hi = M_a_hi; } if (base3 -> b_lo < M_b_lo) { base3 -> b_lo = M_b_lo; } if (base3 -> b_lo > M_b_hi) { base3 -> b_lo = M_b_hi; } if (base3 -> b_hi < M_b_lo) { base3 -> b_hi = M_b_lo; } if (base3 -> b_hi > M_b_hi) { base3 -> b_hi = M_b_hi; } } static void constrain(base3_struct *base3, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges base3 -> a_lo = M_a_lo; base3 -> a_hi = M_a_hi; base3 -> b_lo = M_b_lo; base3 -> b_hi = M_b_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double a_spread = ((M_a_hi - M_a_lo) * percent) / 2; double b_spread = ((M_b_hi - M_b_lo) * percent) / 2; base3 -> a_lo = base3 -> a - a_spread; base3 -> a_hi = base3 -> a + a_spread; base3 -> b_lo = base3 -> b - b_spread; base3 -> b_hi = base3 -> b + b_spread; limiter(base3); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for base3 constraints, requires 4 values, got %d", argc); return; } base3 -> a_lo = atom_getfloat(arg++); base3 -> a_hi = atom_getfloat(arg++); base3 -> b_lo = atom_getfloat(arg++); base3 -> b_hi = atom_getfloat(arg++); limiter(base3); } static void search(base3_struct *base3, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = base3 -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_a = base3 -> a; double temp_b = base3 -> b; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], base3 -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: base3 -> a = (drand48() * (base3 -> a_hi - base3 -> a_lo)) + base3 -> a_lo; base3 -> b = (drand48() * (base3 -> b_hi - base3 -> b_lo)) + base3 -> b_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(base3, NULL, argc, vars); do { calc(base3, base3 -> vars); } while(jump--); base3 -> lyap_exp = lyapunov((void *) base3, (t_gotfn) calc, M_var_count, (double *) base3 -> vars); if (isnan(base3 -> lyap_exp)) { not_found = 1; } if (base3 -> lyap_exp < base3 -> lyap_lo || base3 -> lyap_exp > base3 -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(base3, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) base3 -> lyap_limit); post("Try using wider constraints."); base3 -> a = temp_a; base3 -> b = temp_b; outlet_anything(base3 -> search_outlet, gensym("invalid"), 0, NULL); } else { base3 -> failure_ratio = (base3 -> lyap_limit - not_expired) / base3 -> lyap_limit; make_results(base3); outlet_anything(base3 -> search_outlet, gensym("search"), M_search_count, base3 -> search_out); } } void *base3_new(t_symbol *s, int argc, t_atom *argv) { base3_struct *base3 = (base3_struct *) pd_new(base3_class); if (base3 != NULL) { outlet_new(&base3 -> x_obj, &s_float); base3 -> search_outlet = outlet_new(&base3 -> x_obj, &s_list); base3 -> vars_outlet = outlet_new(&base3 -> x_obj, &s_list); base3 -> params_outlet = outlet_new(&base3 -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { base3 -> vars_init[M_x] = base3 -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv); base3 -> a = (double) atom_getfloatarg(1, argc, argv); base3 -> b = (double) atom_getfloatarg(2, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for base3 fractal. Expecting 3 arguments."); } base3 -> vars_init[M_x] = 0.1; base3 -> a = 1; base3 -> b = 1; } constrain(base3, NULL, 0, NULL); lyap(base3, -1000000.0, 1000000.0, M_failure_limit); } return (void *)base3; } void base3_setup(void) { base3_class = class_new(gensym("base3"), (t_newmethod) base3_new, 0, sizeof(base3_struct), 0, A_GIMME, 0); class_addbang(base3_class, (t_method) calculate); class_addmethod(base3_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(base3_class, (t_method) show, gensym("show"), 0); class_addmethod(base3_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(base3_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(base3_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(base3_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(base3_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(base3_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); }