/* henon Attractor PD External */ /* Copyright Ben Bogart, 2003 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "lyapunov.h" #define M_a_lo -1 #define M_a_hi 2 #define M_b_lo -1 #define M_b_hi 2 #define M_a 0 #define M_b 1 #define M_x 0 #define M_y 1 #define M_param_count 2 #define M_var_count 2 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "henon v0.0, by Ben Bogart, 2003"; t_class *henon_class; typedef struct henon_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double a, a_lo, a_hi, b, b_lo, b_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; t_outlet *outlets[M_var_count - 1]; } henon_struct; static void calc(henon_struct *henon, double *vars) { double x_0, y_0; x_0 =(vars[M_y]+1)-(henon -> a*pow(vars[M_x],2)); y_0 =henon -> b*vars[M_x]; vars[M_x] = x_0; vars[M_y] = y_0; } // end calc static void calculate(henon_struct *henon) { calc(henon, henon -> vars); outlet_float(henon -> x_obj.ob_outlet, henon -> vars[M_x]); outlet_float(henon -> outlets[M_y - 1], henon -> vars[M_y]); } // end calculate static void reset(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { henon -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv); henon -> vars[M_y] = (double) atom_getfloatarg(M_y, argc, argv); } else { henon -> vars[M_x] = henon -> vars_init[M_x]; henon -> vars[M_y] = henon -> vars_init[M_y]; } // end if } // end reset static char *classify(henon_struct *henon) { static char buff[3]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((henon -> a - M_a_lo) * (1.0 / (M_a_hi - M_a_lo))) * 26)]; buff[1] = c[(int) (((henon -> b - M_b_lo) * (1.0 / (M_b_hi - M_b_lo))) * 26)]; buff[2] = '\0'; return buff; } static void make_results(henon_struct *henon) { SETFLOAT(&henon -> search_out[0], henon -> lyap_exp); SETSYMBOL(&henon -> search_out[1], gensym(classify(henon))); SETFLOAT(&henon -> search_out[2], henon -> failure_ratio); SETFLOAT(&henon -> vars_out[M_x], henon -> vars[M_x]); SETFLOAT(&henon -> vars_out[M_y], henon -> vars[M_y]); SETFLOAT(&henon -> params_out[M_a], henon -> a); SETFLOAT(&henon -> params_out[M_b], henon -> b); outlet_list(henon -> params_outlet, gensym("list"), M_param_count, henon -> params_out); outlet_list(henon -> vars_outlet, gensym("list"), M_var_count, henon -> vars_out); } static void show(henon_struct *henon) { make_results(henon); outlet_anything(henon -> search_outlet, gensym("show"), M_search_count, henon -> search_out); } static void param(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) { if (argc != 2) { post("Incorrect number of arguments for henon fractal. Expecting 2 arguments."); return; } henon -> a = (double) atom_getfloatarg(0, argc, argv); henon -> b = (double) atom_getfloatarg(1, argc, argv); } static void seed(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(henon_struct *henon, t_floatarg l, t_floatarg h, t_floatarg lim) { henon -> lyap_lo = l; henon -> lyap_hi = h; henon -> lyap_limit = (double) ((int) lim); } static void elyap(henon_struct *henon) { double results[M_var_count]; int i; if (lyapunov_full((void *) henon, (t_gotfn) calc, M_var_count, henon -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(henon_struct *henon) { if (henon -> a_lo < M_a_lo) { henon -> a_lo = M_a_lo; } if (henon -> a_lo > M_a_hi) { henon -> a_lo = M_a_hi; } if (henon -> a_hi < M_a_lo) { henon -> a_hi = M_a_lo; } if (henon -> a_hi > M_a_hi) { henon -> a_hi = M_a_hi; } if (henon -> b_lo < M_b_lo) { henon -> b_lo = M_b_lo; } if (henon -> b_lo > M_b_hi) { henon -> b_lo = M_b_hi; } if (henon -> b_hi < M_b_lo) { henon -> b_hi = M_b_lo; } if (henon -> b_hi > M_b_hi) { henon -> b_hi = M_b_hi; } } static void constrain(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges henon -> a_lo = M_a_lo; henon -> a_hi = M_a_hi; henon -> b_lo = M_b_lo; henon -> b_hi = M_b_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double a_spread = ((M_a_hi - M_a_lo) * percent) / 2; double b_spread = ((M_b_hi - M_b_lo) * percent) / 2; henon -> a_lo = henon -> a - a_spread; henon -> a_hi = henon -> a + a_spread; henon -> b_lo = henon -> b - b_spread; henon -> b_hi = henon -> b + b_spread; limiter(henon); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for henon constraints, requires 4 values, got %d", argc); return; } henon -> a_lo = atom_getfloat(arg++); henon -> a_hi = atom_getfloat(arg++); henon -> b_lo = atom_getfloat(arg++); henon -> b_hi = atom_getfloat(arg++); limiter(henon); } static void search(henon_struct *henon, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = henon -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_a = henon -> a; double temp_b = henon -> b; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], henon -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: henon -> a = (drand48() * (henon -> a_hi - henon -> a_lo)) + henon -> a_lo; henon -> b = (drand48() * (henon -> b_hi - henon -> b_lo)) + henon -> b_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(henon, NULL, argc, vars); do { calc(henon, henon -> vars); } while(jump--); henon -> lyap_exp = lyapunov((void *) henon, (t_gotfn) calc, M_var_count, (double *) henon -> vars); if (isnan(henon -> lyap_exp)) { not_found = 1; } if (henon -> lyap_exp < henon -> lyap_lo || henon -> lyap_exp > henon -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(henon, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) henon -> lyap_limit); post("Try using wider constraints."); henon -> a = temp_a; henon -> b = temp_b; outlet_anything(henon -> search_outlet, gensym("invalid"), 0, NULL); } else { henon -> failure_ratio = (henon -> lyap_limit - not_expired) / henon -> lyap_limit; make_results(henon); outlet_anything(henon -> search_outlet, gensym("search"), M_search_count, henon -> search_out); } } void *henon_new(t_symbol *s, int argc, t_atom *argv) { henon_struct *henon = (henon_struct *) pd_new(henon_class); if (henon != NULL) { outlet_new(&henon -> x_obj, &s_float); henon -> outlets[0] = outlet_new(&henon -> x_obj, &s_float); henon -> search_outlet = outlet_new(&henon -> x_obj, &s_list); henon -> vars_outlet = outlet_new(&henon -> x_obj, &s_list); henon -> params_outlet = outlet_new(&henon -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { henon -> vars_init[M_x] = henon -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv); henon -> vars_init[M_y] = henon -> vars[M_y] = (double) atom_getfloatarg(1, argc, argv); henon -> a = (double) atom_getfloatarg(2, argc, argv); henon -> b = (double) atom_getfloatarg(3, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for henon fractal. Expecting 4 arguments."); } henon -> vars_init[M_x] = 1; henon -> vars_init[M_y] = 1; henon -> a = 1.4; henon -> b = 0.3; } constrain(henon, NULL, 0, NULL); lyap(henon, -1000000.0, 1000000.0, M_failure_limit); } return (void *)henon; } void henon_setup(void) { henon_class = class_new(gensym("henon"), (t_newmethod) henon_new, 0, sizeof(henon_struct), 0, A_GIMME, 0); class_addbang(henon_class, (t_method) calculate); class_addmethod(henon_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(henon_class, (t_method) show, gensym("show"), 0); class_addmethod(henon_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(henon_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(henon_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(henon_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(henon_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(henon_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); }