/* ikeda Attractor PD External */ /* Copyright Ben Bogart, 2002 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "chaos.h" #define M_a_lo -350 #define M_a_hi 350 #define M_b_lo -2 #define M_b_hi 2 #define M_c_lo -350 #define M_c_hi 350 #define M_rho_lo -250 #define M_rho_hi 250 #define M_a 0 #define M_b 1 #define M_c 2 #define M_rho 3 #define M_x 0 #define M_y 1 #define M_param_count 4 #define M_var_count 2 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "ikeda v0.0, by Ben Bogart, 2002"; t_class *ikeda_class; typedef struct ikeda_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double a, a_lo, a_hi, b, b_lo, b_hi, c, c_lo, c_hi, rho, rho_lo, rho_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; t_outlet *outlets[M_var_count - 1]; } ikeda_struct; static void calc(ikeda_struct *ikeda, double *vars) { double t, s, d, x_0, y_0; t=ikeda -> a-ikeda -> c/(1.0+vars[M_x]*vars[M_x]+vars[M_y]*vars[M_y]); s=sin(t); d=cos(t); x_0 =ikeda -> rho+ikeda -> b*(vars[M_x]*d-vars[M_y]*s); y_0 =ikeda -> b*(vars[M_x]*s+vars[M_y]*d); vars[M_x] = x_0; vars[M_y] = y_0; } // end calc static void calculate(ikeda_struct *ikeda) { calc(ikeda, ikeda -> vars); outlet_float(ikeda -> x_obj.ob_outlet, ikeda -> vars[M_x]); outlet_float(ikeda -> outlets[M_y - 1], ikeda -> vars[M_y]); } // end calculate static void reset(ikeda_struct *ikeda, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { ikeda -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv); ikeda -> vars[M_y] = (double) atom_getfloatarg(M_y, argc, argv); } else { ikeda -> vars[M_x] = ikeda -> vars_init[M_x]; ikeda -> vars[M_y] = ikeda -> vars_init[M_y]; } // end if } // end reset static char *classify(ikeda_struct *ikeda) { static char buff[5]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((ikeda -> a - M_a_lo) * (1.0 / (M_a_hi - M_a_lo))) * 26)]; buff[1] = c[(int) (((ikeda -> b - M_b_lo) * (1.0 / (M_b_hi - M_b_lo))) * 26)]; buff[2] = c[(int) (((ikeda -> c - M_c_lo) * (1.0 / (M_c_hi - M_c_lo))) * 26)]; buff[3] = c[(int) (((ikeda -> rho - M_rho_lo) * (1.0 / (M_rho_hi - M_rho_lo))) * 26)]; buff[4] = '\0'; return buff; } static void make_results(ikeda_struct *ikeda) { SETFLOAT(&ikeda -> search_out[0], ikeda -> lyap_exp); SETSYMBOL(&ikeda -> search_out[1], gensym(classify(ikeda))); SETFLOAT(&ikeda -> search_out[2], ikeda -> failure_ratio); SETFLOAT(&ikeda -> vars_out[M_x], ikeda -> vars[M_x]); SETFLOAT(&ikeda -> vars_out[M_y], ikeda -> vars[M_y]); SETFLOAT(&ikeda -> params_out[M_a], ikeda -> a); SETFLOAT(&ikeda -> params_out[M_b], ikeda -> b); SETFLOAT(&ikeda -> params_out[M_c], ikeda -> c); SETFLOAT(&ikeda -> params_out[M_rho], ikeda -> rho); outlet_list(ikeda -> params_outlet, gensym("list"), M_param_count, ikeda -> params_out); outlet_list(ikeda -> vars_outlet, gensym("list"), M_var_count, ikeda -> vars_out); } static void show(ikeda_struct *ikeda) { make_results(ikeda); outlet_anything(ikeda -> search_outlet, gensym("show"), M_search_count, ikeda -> search_out); } static void param(ikeda_struct *ikeda, t_symbol *s, int argc, t_atom *argv) { if (argc != 4) { post("Incorrect number of arguments for ikeda fractal. Expecting 4 arguments."); return; } ikeda -> a = (double) atom_getfloatarg(0, argc, argv); ikeda -> b = (double) atom_getfloatarg(1, argc, argv); ikeda -> c = (double) atom_getfloatarg(2, argc, argv); ikeda -> rho = (double) atom_getfloatarg(3, argc, argv); } static void seed(ikeda_struct *ikeda, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(ikeda_struct *ikeda, t_floatarg l, t_floatarg h, t_floatarg lim) { ikeda -> lyap_lo = l; ikeda -> lyap_hi = h; ikeda -> lyap_limit = (double) ((int) lim); } static void elyap(ikeda_struct *ikeda) { double results[M_var_count]; int i; if (lyapunov_full((void *) ikeda, (t_gotfn) calc, M_var_count, ikeda -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(ikeda_struct *ikeda) { if (ikeda -> a_lo < M_a_lo) { ikeda -> a_lo = M_a_lo; } if (ikeda -> a_lo > M_a_hi) { ikeda -> a_lo = M_a_hi; } if (ikeda -> a_hi < M_a_lo) { ikeda -> a_hi = M_a_lo; } if (ikeda -> a_hi > M_a_hi) { ikeda -> a_hi = M_a_hi; } if (ikeda -> b_lo < M_b_lo) { ikeda -> b_lo = M_b_lo; } if (ikeda -> b_lo > M_b_hi) { ikeda -> b_lo = M_b_hi; } if (ikeda -> b_hi < M_b_lo) { ikeda -> b_hi = M_b_lo; } if (ikeda -> b_hi > M_b_hi) { ikeda -> b_hi = M_b_hi; } if (ikeda -> c_lo < M_c_lo) { ikeda -> c_lo = M_c_lo; } if (ikeda -> c_lo > M_c_hi) { ikeda -> c_lo = M_c_hi; } if (ikeda -> c_hi < M_c_lo) { ikeda -> c_hi = M_c_lo; } if (ikeda -> c_hi > M_c_hi) { ikeda -> c_hi = M_c_hi; } if (ikeda -> rho_lo < M_rho_lo) { ikeda -> rho_lo = M_rho_lo; } if (ikeda -> rho_lo > M_rho_hi) { ikeda -> rho_lo = M_rho_hi; } if (ikeda -> rho_hi < M_rho_lo) { ikeda -> rho_hi = M_rho_lo; } if (ikeda -> rho_hi > M_rho_hi) { ikeda -> rho_hi = M_rho_hi; } } static void constrain(ikeda_struct *ikeda, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges ikeda -> a_lo = M_a_lo; ikeda -> a_hi = M_a_hi; ikeda -> b_lo = M_b_lo; ikeda -> b_hi = M_b_hi; ikeda -> c_lo = M_c_lo; ikeda -> c_hi = M_c_hi; ikeda -> rho_lo = M_rho_lo; ikeda -> rho_hi = M_rho_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double a_spread = ((M_a_hi - M_a_lo) * percent) / 2; double b_spread = ((M_b_hi - M_b_lo) * percent) / 2; double c_spread = ((M_c_hi - M_c_lo) * percent) / 2; double rho_spread = ((M_rho_hi - M_rho_lo) * percent) / 2; ikeda -> a_lo = ikeda -> a - a_spread; ikeda -> a_hi = ikeda -> a + a_spread; ikeda -> b_lo = ikeda -> b - b_spread; ikeda -> b_hi = ikeda -> b + b_spread; ikeda -> c_lo = ikeda -> c - c_spread; ikeda -> c_hi = ikeda -> c + c_spread; ikeda -> rho_lo = ikeda -> rho - rho_spread; ikeda -> rho_hi = ikeda -> rho + rho_spread; limiter(ikeda); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for ikeda constraints, requires 8 values, got %d", argc); return; } ikeda -> a_lo = atom_getfloat(arg++); ikeda -> a_hi = atom_getfloat(arg++); ikeda -> b_lo = atom_getfloat(arg++); ikeda -> b_hi = atom_getfloat(arg++); ikeda -> c_lo = atom_getfloat(arg++); ikeda -> c_hi = atom_getfloat(arg++); ikeda -> rho_lo = atom_getfloat(arg++); ikeda -> rho_hi = atom_getfloat(arg++); limiter(ikeda); } static void search(ikeda_struct *ikeda, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = ikeda -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_a = ikeda -> a; double temp_b = ikeda -> b; double temp_c = ikeda -> c; double temp_rho = ikeda -> rho; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], ikeda -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: ikeda -> a = (drand48() * (ikeda -> a_hi - ikeda -> a_lo)) + ikeda -> a_lo; ikeda -> b = (drand48() * (ikeda -> b_hi - ikeda -> b_lo)) + ikeda -> b_lo; ikeda -> c = (drand48() * (ikeda -> c_hi - ikeda -> c_lo)) + ikeda -> c_lo; ikeda -> rho = (drand48() * (ikeda -> rho_hi - ikeda -> rho_lo)) + ikeda -> rho_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(ikeda, NULL, argc, vars); do { calc(ikeda, ikeda -> vars); } while(jump--); ikeda -> lyap_exp = lyapunov((void *) ikeda, (t_gotfn) calc, M_var_count, (double *) ikeda -> vars); if (isnan(ikeda -> lyap_exp)) { not_found = 1; } if (ikeda -> lyap_exp < ikeda -> lyap_lo || ikeda -> lyap_exp > ikeda -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(ikeda, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) ikeda -> lyap_limit); post("Try using wider constraints."); ikeda -> a = temp_a; ikeda -> b = temp_b; ikeda -> c = temp_c; ikeda -> rho = temp_rho; outlet_anything(ikeda -> search_outlet, gensym("invalid"), 0, NULL); } else { ikeda -> failure_ratio = (ikeda -> lyap_limit - not_expired) / ikeda -> lyap_limit; make_results(ikeda); outlet_anything(ikeda -> search_outlet, gensym("search"), M_search_count, ikeda -> search_out); } } void *ikeda_new(t_symbol *s, int argc, t_atom *argv) { ikeda_struct *ikeda = (ikeda_struct *) pd_new(ikeda_class); if (ikeda != NULL) { outlet_new(&ikeda -> x_obj, &s_float); ikeda -> outlets[0] = outlet_new(&ikeda -> x_obj, &s_float); ikeda -> search_outlet = outlet_new(&ikeda -> x_obj, &s_list); ikeda -> vars_outlet = outlet_new(&ikeda -> x_obj, &s_list); ikeda -> params_outlet = outlet_new(&ikeda -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { ikeda -> vars_init[M_x] = ikeda -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv); ikeda -> vars_init[M_y] = ikeda -> vars[M_y] = (double) atom_getfloatarg(1, argc, argv); ikeda -> a = (double) atom_getfloatarg(2, argc, argv); ikeda -> b = (double) atom_getfloatarg(3, argc, argv); ikeda -> c = (double) atom_getfloatarg(4, argc, argv); ikeda -> rho = (double) atom_getfloatarg(5, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for ikeda fractal. Expecting 6 arguments."); } ikeda -> vars_init[M_x] = 0.1; ikeda -> vars_init[M_y] = 0.1; ikeda -> a = 0.4; ikeda -> b = 0.9; ikeda -> c = 6; ikeda -> rho = 1; } constrain(ikeda, NULL, 0, NULL); lyap(ikeda, -1000000.0, 1000000.0, M_failure_limit); } return (void *)ikeda; } void ikeda_setup(void) { ikeda_class = class_new(gensym("ikeda"), (t_newmethod) ikeda_new, 0, sizeof(ikeda_struct), 0, A_GIMME, 0); class_addbang(ikeda_class, (t_method) calculate); class_addmethod(ikeda_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(ikeda_class, (t_method) show, gensym("show"), 0); class_addmethod(ikeda_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(ikeda_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(ikeda_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(ikeda_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(ikeda_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(ikeda_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); }