/* lotkavolterra Attractor PD External */ /* Copyright Michael McGonagle, 2003 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "chaos.h" #define M_a_lo -1000 #define M_a_hi 1000 #define M_b_lo -1000 #define M_b_hi 1000 #define M_c_lo -1000 #define M_c_hi 1000 #define M_e_lo -1000 #define M_e_hi 1000 #define M_a 0 #define M_b 1 #define M_c 2 #define M_e 3 #define M_r 0 #define M_f 1 #define M_param_count 4 #define M_var_count 2 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "lotkavolterra v0.0, by Michael McGonagle, 2003"; t_class *lotkavolterra_class; typedef struct lotkavolterra_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double a, a_lo, a_hi, b, b_lo, b_hi, c, c_lo, c_hi, e, e_lo, e_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; t_outlet *outlets[M_var_count - 1]; } lotkavolterra_struct; static void calc(lotkavolterra_struct *lotkavolterra, double *vars) { double r_0, f_0; r_0 =vars[M_r]+lotkavolterra -> a*vars[M_r]-lotkavolterra -> b*vars[M_r]*vars[M_f]; f_0 =vars[M_f]+lotkavolterra -> e*lotkavolterra -> b*vars[M_r]*vars[M_f]-lotkavolterra -> c*vars[M_f]; vars[M_r] = r_0; vars[M_f] = f_0; } // end calc static void calculate(lotkavolterra_struct *lotkavolterra) { calc(lotkavolterra, lotkavolterra -> vars); outlet_float(lotkavolterra -> x_obj.ob_outlet, lotkavolterra -> vars[M_r]); outlet_float(lotkavolterra -> outlets[M_f - 1], lotkavolterra -> vars[M_f]); } // end calculate static void reset(lotkavolterra_struct *lotkavolterra, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { lotkavolterra -> vars[M_r] = (double) atom_getfloatarg(M_r, argc, argv); lotkavolterra -> vars[M_f] = (double) atom_getfloatarg(M_f, argc, argv); } else { lotkavolterra -> vars[M_r] = lotkavolterra -> vars_init[M_r]; lotkavolterra -> vars[M_f] = lotkavolterra -> vars_init[M_f]; } // end if } // end reset static char *classify(lotkavolterra_struct *lotkavolterra) { static char buff[5]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((lotkavolterra -> a - M_a_lo) * (1.0 / (M_a_hi - M_a_lo))) * 26)]; buff[1] = c[(int) (((lotkavolterra -> b - M_b_lo) * (1.0 / (M_b_hi - M_b_lo))) * 26)]; buff[2] = c[(int) (((lotkavolterra -> c - M_c_lo) * (1.0 / (M_c_hi - M_c_lo))) * 26)]; buff[3] = c[(int) (((lotkavolterra -> e - M_e_lo) * (1.0 / (M_e_hi - M_e_lo))) * 26)]; buff[4] = '\0'; return buff; } static void make_results(lotkavolterra_struct *lotkavolterra) { SETFLOAT(&lotkavolterra -> search_out[0], lotkavolterra -> lyap_exp); SETSYMBOL(&lotkavolterra -> search_out[1], gensym(classify(lotkavolterra))); SETFLOAT(&lotkavolterra -> search_out[2], lotkavolterra -> failure_ratio); SETFLOAT(&lotkavolterra -> vars_out[M_r], lotkavolterra -> vars[M_r]); SETFLOAT(&lotkavolterra -> vars_out[M_f], lotkavolterra -> vars[M_f]); SETFLOAT(&lotkavolterra -> params_out[M_a], lotkavolterra -> a); SETFLOAT(&lotkavolterra -> params_out[M_b], lotkavolterra -> b); SETFLOAT(&lotkavolterra -> params_out[M_c], lotkavolterra -> c); SETFLOAT(&lotkavolterra -> params_out[M_e], lotkavolterra -> e); outlet_list(lotkavolterra -> params_outlet, gensym("list"), M_param_count, lotkavolterra -> params_out); outlet_list(lotkavolterra -> vars_outlet, gensym("list"), M_var_count, lotkavolterra -> vars_out); } static void show(lotkavolterra_struct *lotkavolterra) { make_results(lotkavolterra); outlet_anything(lotkavolterra -> search_outlet, gensym("show"), M_search_count, lotkavolterra -> search_out); } static void param(lotkavolterra_struct *lotkavolterra, t_symbol *s, int argc, t_atom *argv) { if (argc != 4) { post("Incorrect number of arguments for lotkavolterra fractal. Expecting 4 arguments."); return; } lotkavolterra -> a = (double) atom_getfloatarg(0, argc, argv); lotkavolterra -> b = (double) atom_getfloatarg(1, argc, argv); lotkavolterra -> c = (double) atom_getfloatarg(2, argc, argv); lotkavolterra -> e = (double) atom_getfloatarg(3, argc, argv); } static void seed(lotkavolterra_struct *lotkavolterra, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(lotkavolterra_struct *lotkavolterra, t_floatarg l, t_floatarg h, t_floatarg lim) { lotkavolterra -> lyap_lo = l; lotkavolterra -> lyap_hi = h; lotkavolterra -> lyap_limit = (double) ((int) lim); } static void elyap(lotkavolterra_struct *lotkavolterra) { double results[M_var_count]; int i; if (lyapunov_full((void *) lotkavolterra, (t_gotfn) calc, M_var_count, lotkavolterra -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(lotkavolterra_struct *lotkavolterra) { if (lotkavolterra -> a_lo < M_a_lo) { lotkavolterra -> a_lo = M_a_lo; } if (lotkavolterra -> a_lo > M_a_hi) { lotkavolterra -> a_lo = M_a_hi; } if (lotkavolterra -> a_hi < M_a_lo) { lotkavolterra -> a_hi = M_a_lo; } if (lotkavolterra -> a_hi > M_a_hi) { lotkavolterra -> a_hi = M_a_hi; } if (lotkavolterra -> b_lo < M_b_lo) { lotkavolterra -> b_lo = M_b_lo; } if (lotkavolterra -> b_lo > M_b_hi) { lotkavolterra -> b_lo = M_b_hi; } if (lotkavolterra -> b_hi < M_b_lo) { lotkavolterra -> b_hi = M_b_lo; } if (lotkavolterra -> b_hi > M_b_hi) { lotkavolterra -> b_hi = M_b_hi; } if (lotkavolterra -> c_lo < M_c_lo) { lotkavolterra -> c_lo = M_c_lo; } if (lotkavolterra -> c_lo > M_c_hi) { lotkavolterra -> c_lo = M_c_hi; } if (lotkavolterra -> c_hi < M_c_lo) { lotkavolterra -> c_hi = M_c_lo; } if (lotkavolterra -> c_hi > M_c_hi) { lotkavolterra -> c_hi = M_c_hi; } if (lotkavolterra -> e_lo < M_e_lo) { lotkavolterra -> e_lo = M_e_lo; } if (lotkavolterra -> e_lo > M_e_hi) { lotkavolterra -> e_lo = M_e_hi; } if (lotkavolterra -> e_hi < M_e_lo) { lotkavolterra -> e_hi = M_e_lo; } if (lotkavolterra -> e_hi > M_e_hi) { lotkavolterra -> e_hi = M_e_hi; } } static void constrain(lotkavolterra_struct *lotkavolterra, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges lotkavolterra -> a_lo = M_a_lo; lotkavolterra -> a_hi = M_a_hi; lotkavolterra -> b_lo = M_b_lo; lotkavolterra -> b_hi = M_b_hi; lotkavolterra -> c_lo = M_c_lo; lotkavolterra -> c_hi = M_c_hi; lotkavolterra -> e_lo = M_e_lo; lotkavolterra -> e_hi = M_e_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double a_spread = ((M_a_hi - M_a_lo) * percent) / 2; double b_spread = ((M_b_hi - M_b_lo) * percent) / 2; double c_spread = ((M_c_hi - M_c_lo) * percent) / 2; double e_spread = ((M_e_hi - M_e_lo) * percent) / 2; lotkavolterra -> a_lo = lotkavolterra -> a - a_spread; lotkavolterra -> a_hi = lotkavolterra -> a + a_spread; lotkavolterra -> b_lo = lotkavolterra -> b - b_spread; lotkavolterra -> b_hi = lotkavolterra -> b + b_spread; lotkavolterra -> c_lo = lotkavolterra -> c - c_spread; lotkavolterra -> c_hi = lotkavolterra -> c + c_spread; lotkavolterra -> e_lo = lotkavolterra -> e - e_spread; lotkavolterra -> e_hi = lotkavolterra -> e + e_spread; limiter(lotkavolterra); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for lotkavolterra constraints, requires 8 values, got %d", argc); return; } lotkavolterra -> a_lo = atom_getfloat(arg++); lotkavolterra -> a_hi = atom_getfloat(arg++); lotkavolterra -> b_lo = atom_getfloat(arg++); lotkavolterra -> b_hi = atom_getfloat(arg++); lotkavolterra -> c_lo = atom_getfloat(arg++); lotkavolterra -> c_hi = atom_getfloat(arg++); lotkavolterra -> e_lo = atom_getfloat(arg++); lotkavolterra -> e_hi = atom_getfloat(arg++); limiter(lotkavolterra); } static void search(lotkavolterra_struct *lotkavolterra, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = lotkavolterra -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_a = lotkavolterra -> a; double temp_b = lotkavolterra -> b; double temp_c = lotkavolterra -> c; double temp_e = lotkavolterra -> e; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], lotkavolterra -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: lotkavolterra -> a = (drand48() * (lotkavolterra -> a_hi - lotkavolterra -> a_lo)) + lotkavolterra -> a_lo; lotkavolterra -> b = (drand48() * (lotkavolterra -> b_hi - lotkavolterra -> b_lo)) + lotkavolterra -> b_lo; lotkavolterra -> c = (drand48() * (lotkavolterra -> c_hi - lotkavolterra -> c_lo)) + lotkavolterra -> c_lo; lotkavolterra -> e = (drand48() * (lotkavolterra -> e_hi - lotkavolterra -> e_lo)) + lotkavolterra -> e_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(lotkavolterra, NULL, argc, vars); do { calc(lotkavolterra, lotkavolterra -> vars); } while(jump--); lotkavolterra -> lyap_exp = lyapunov((void *) lotkavolterra, (t_gotfn) calc, M_var_count, (double *) lotkavolterra -> vars); if (isnan(lotkavolterra -> lyap_exp)) { not_found = 1; } if (lotkavolterra -> lyap_exp < lotkavolterra -> lyap_lo || lotkavolterra -> lyap_exp > lotkavolterra -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(lotkavolterra, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) lotkavolterra -> lyap_limit); post("Try using wider constraints."); lotkavolterra -> a = temp_a; lotkavolterra -> b = temp_b; lotkavolterra -> c = temp_c; lotkavolterra -> e = temp_e; outlet_anything(lotkavolterra -> search_outlet, gensym("invalid"), 0, NULL); } else { lotkavolterra -> failure_ratio = (lotkavolterra -> lyap_limit - not_expired) / lotkavolterra -> lyap_limit; make_results(lotkavolterra); outlet_anything(lotkavolterra -> search_outlet, gensym("search"), M_search_count, lotkavolterra -> search_out); } } void *lotkavolterra_new(t_symbol *s, int argc, t_atom *argv) { lotkavolterra_struct *lotkavolterra = (lotkavolterra_struct *) pd_new(lotkavolterra_class); if (lotkavolterra != NULL) { outlet_new(&lotkavolterra -> x_obj, &s_float); lotkavolterra -> outlets[0] = outlet_new(&lotkavolterra -> x_obj, &s_float); lotkavolterra -> search_outlet = outlet_new(&lotkavolterra -> x_obj, &s_list); lotkavolterra -> vars_outlet = outlet_new(&lotkavolterra -> x_obj, &s_list); lotkavolterra -> params_outlet = outlet_new(&lotkavolterra -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { lotkavolterra -> vars_init[M_r] = lotkavolterra -> vars[M_r] = (double) atom_getfloatarg(0, argc, argv); lotkavolterra -> vars_init[M_f] = lotkavolterra -> vars[M_f] = (double) atom_getfloatarg(1, argc, argv); lotkavolterra -> a = (double) atom_getfloatarg(2, argc, argv); lotkavolterra -> b = (double) atom_getfloatarg(3, argc, argv); lotkavolterra -> c = (double) atom_getfloatarg(4, argc, argv); lotkavolterra -> e = (double) atom_getfloatarg(5, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for lotkavolterra fractal. Expecting 6 arguments."); } lotkavolterra -> vars_init[M_r] = 0.1; lotkavolterra -> vars_init[M_f] = 0.1; lotkavolterra -> a = 0.04; lotkavolterra -> b = 0.0005; lotkavolterra -> c = 0.2; lotkavolterra -> e = 0.1; } constrain(lotkavolterra, NULL, 0, NULL); lyap(lotkavolterra, -1000000.0, 1000000.0, M_failure_limit); } return (void *)lotkavolterra; } void lotkavolterra_setup(void) { lotkavolterra_class = class_new(gensym("lotkavolterra"), (t_newmethod) lotkavolterra_new, 0, sizeof(lotkavolterra_struct), 0, A_GIMME, 0); class_addbang(lotkavolterra_class, (t_method) calculate); class_addmethod(lotkavolterra_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(lotkavolterra_class, (t_method) show, gensym("show"), 0); class_addmethod(lotkavolterra_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(lotkavolterra_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(lotkavolterra_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(lotkavolterra_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(lotkavolterra_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(lotkavolterra_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); }