/* mlogistic Attractor PD External */ /* Copyright Michael McGonagle, from ??????, 2003 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "lyapunov.h" #define M_c_lo 0 #define M_c_hi 4 #define M_c 0 #define M_x 0 #define M_param_count 1 #define M_var_count 1 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "mlogistic v0.0, by Michael McGonagle, from ??????, 2003"; t_class *mlogistic_class; typedef struct mlogistic_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double c, c_lo, c_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; } mlogistic_struct; static void calc(mlogistic_struct *mlogistic, double *vars) { double x_0; x_0 =(vars[M_x]*vars[M_x])+mlogistic -> c; vars[M_x] = x_0; } // end calc static void calculate(mlogistic_struct *mlogistic) { calc(mlogistic, mlogistic -> vars); outlet_float(mlogistic -> x_obj.ob_outlet, mlogistic -> vars[M_x]); } // end calculate static void reset(mlogistic_struct *mlogistic, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { mlogistic -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv); } else { mlogistic -> vars[M_x] = mlogistic -> vars_init[M_x]; } // end if } // end reset static char *classify(mlogistic_struct *mlogistic) { static char buff[2]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((mlogistic -> c - M_c_lo) * (1.0 / (M_c_hi - M_c_lo))) * 26)]; buff[1] = '\0'; return buff; } static void make_results(mlogistic_struct *mlogistic) { SETFLOAT(&mlogistic -> search_out[0], mlogistic -> lyap_exp); SETSYMBOL(&mlogistic -> search_out[1], gensym(classify(mlogistic))); SETFLOAT(&mlogistic -> search_out[2], mlogistic -> failure_ratio); SETFLOAT(&mlogistic -> vars_out[M_x], mlogistic -> vars[M_x]); SETFLOAT(&mlogistic -> params_out[M_c], mlogistic -> c); outlet_list(mlogistic -> params_outlet, gensym("list"), M_param_count, mlogistic -> params_out); outlet_list(mlogistic -> vars_outlet, gensym("list"), M_var_count, mlogistic -> vars_out); } static void show(mlogistic_struct *mlogistic) { make_results(mlogistic); outlet_anything(mlogistic -> search_outlet, gensym("show"), M_search_count, mlogistic -> search_out); } static void param(mlogistic_struct *mlogistic, t_symbol *s, int argc, t_atom *argv) { if (argc != 1) { post("Incorrect number of arguments for mlogistic fractal. Expecting 1 arguments."); return; } mlogistic -> c = (double) atom_getfloatarg(0, argc, argv); } static void seed(mlogistic_struct *mlogistic, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(mlogistic_struct *mlogistic, t_floatarg l, t_floatarg h, t_floatarg lim) { mlogistic -> lyap_lo = l; mlogistic -> lyap_hi = h; mlogistic -> lyap_limit = (double) ((int) lim); } static void elyap(mlogistic_struct *mlogistic) { double results[M_var_count]; int i; if (lyapunov_full((void *) mlogistic, (t_gotfn) calc, M_var_count, mlogistic -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(mlogistic_struct *mlogistic) { if (mlogistic -> c_lo < M_c_lo) { mlogistic -> c_lo = M_c_lo; } if (mlogistic -> c_lo > M_c_hi) { mlogistic -> c_lo = M_c_hi; } if (mlogistic -> c_hi < M_c_lo) { mlogistic -> c_hi = M_c_lo; } if (mlogistic -> c_hi > M_c_hi) { mlogistic -> c_hi = M_c_hi; } } static void constrain(mlogistic_struct *mlogistic, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges mlogistic -> c_lo = M_c_lo; mlogistic -> c_hi = M_c_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double c_spread = ((M_c_hi - M_c_lo) * percent) / 2; mlogistic -> c_lo = mlogistic -> c - c_spread; mlogistic -> c_hi = mlogistic -> c + c_spread; limiter(mlogistic); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for mlogistic constraints, requires 2 values, got %d", argc); return; } mlogistic -> c_lo = atom_getfloat(arg++); mlogistic -> c_hi = atom_getfloat(arg++); limiter(mlogistic); } static void search(mlogistic_struct *mlogistic, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = mlogistic -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_c = mlogistic -> c; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], mlogistic -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: mlogistic -> c = (drand48() * (mlogistic -> c_hi - mlogistic -> c_lo)) + mlogistic -> c_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(mlogistic, NULL, argc, vars); do { calc(mlogistic, mlogistic -> vars); } while(jump--); mlogistic -> lyap_exp = lyapunov((void *) mlogistic, (t_gotfn) calc, M_var_count, (double *) mlogistic -> vars); if (isnan(mlogistic -> lyap_exp)) { not_found = 1; } if (mlogistic -> lyap_exp < mlogistic -> lyap_lo || mlogistic -> lyap_exp > mlogistic -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(mlogistic, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) mlogistic -> lyap_limit); post("Try using wider constraints."); mlogistic -> c = temp_c; outlet_anything(mlogistic -> search_outlet, gensym("invalid"), 0, NULL); } else { mlogistic -> failure_ratio = (mlogistic -> lyap_limit - not_expired) / mlogistic -> lyap_limit; make_results(mlogistic); outlet_anything(mlogistic -> search_outlet, gensym("search"), M_search_count, mlogistic -> search_out); } } void *mlogistic_new(t_symbol *s, int argc, t_atom *argv) { mlogistic_struct *mlogistic = (mlogistic_struct *) pd_new(mlogistic_class); if (mlogistic != NULL) { outlet_new(&mlogistic -> x_obj, &s_float); mlogistic -> search_outlet = outlet_new(&mlogistic -> x_obj, &s_list); mlogistic -> vars_outlet = outlet_new(&mlogistic -> x_obj, &s_list); mlogistic -> params_outlet = outlet_new(&mlogistic -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { mlogistic -> vars_init[M_x] = mlogistic -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv); mlogistic -> c = (double) atom_getfloatarg(1, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for mlogistic fractal. Expecting 2 arguments."); } mlogistic -> vars_init[M_x] = 0.1; mlogistic -> c = 4; } constrain(mlogistic, NULL, 0, NULL); lyap(mlogistic, -1000000.0, 1000000.0, M_failure_limit); } return (void *)mlogistic; } void mlogistic_setup(void) { mlogistic_class = class_new(gensym("mlogistic"), (t_newmethod) mlogistic_new, 0, sizeof(mlogistic_struct), 0, A_GIMME, 0); class_addbang(mlogistic_class, (t_method) calculate); class_addmethod(mlogistic_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(mlogistic_class, (t_method) show, gensym("show"), 0); class_addmethod(mlogistic_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(mlogistic_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(mlogistic_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(mlogistic_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(mlogistic_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(mlogistic_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); }