/* rossler Attractor PD External */ /* Copyright Ben Bogart, 2002 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "lyapunov.h" #define M_h_lo -1000 #define M_h_hi 1000 #define M_a_lo -1000 #define M_a_hi 1000 #define M_b_lo -1000 #define M_b_hi 1000 #define M_c_lo -1000 #define M_c_hi 1000 #define M_h 0 #define M_a 1 #define M_b 2 #define M_c 3 #define M_x 0 #define M_y 1 #define M_z 2 #define M_param_count 4 #define M_var_count 3 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "rossler v0.0, by Ben Bogart, 2002"; t_class *rossler_class; typedef struct rossler_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double h, h_lo, h_hi, a, a_lo, a_hi, b, b_lo, b_hi, c, c_lo, c_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; t_outlet *outlets[M_var_count - 1]; } rossler_struct; static void calc(rossler_struct *rossler, double *vars) { double x_0, y_0, z_0; x_0 =vars[M_x]+rossler -> h*(-vars[M_y]-vars[M_z]); y_0 =vars[M_y]+rossler -> h*(vars[M_x]+(rossler -> a*vars[M_y])); z_0 =vars[M_z]+rossler -> h*(rossler -> b+(vars[M_x]*vars[M_z])-(rossler -> c*vars[M_z])); vars[M_x] = x_0; vars[M_y] = y_0; vars[M_z] = z_0; } // end calc static void calculate(rossler_struct *rossler) { calc(rossler, rossler -> vars); outlet_float(rossler -> x_obj.ob_outlet, rossler -> vars[M_x]); outlet_float(rossler -> outlets[M_y - 1], rossler -> vars[M_y]); outlet_float(rossler -> outlets[M_z - 1], rossler -> vars[M_z]); } // end calculate static void reset(rossler_struct *rossler, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { rossler -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv); rossler -> vars[M_y] = (double) atom_getfloatarg(M_y, argc, argv); rossler -> vars[M_z] = (double) atom_getfloatarg(M_z, argc, argv); } else { rossler -> vars[M_x] = rossler -> vars_init[M_x]; rossler -> vars[M_y] = rossler -> vars_init[M_y]; rossler -> vars[M_z] = rossler -> vars_init[M_z]; } // end if } // end reset static char *classify(rossler_struct *rossler) { static char buff[5]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((rossler -> h - M_h_lo) * (1.0 / (M_h_hi - M_h_lo))) * 26)]; buff[1] = c[(int) (((rossler -> a - M_a_lo) * (1.0 / (M_a_hi - M_a_lo))) * 26)]; buff[2] = c[(int) (((rossler -> b - M_b_lo) * (1.0 / (M_b_hi - M_b_lo))) * 26)]; buff[3] = c[(int) (((rossler -> c - M_c_lo) * (1.0 / (M_c_hi - M_c_lo))) * 26)]; buff[4] = '\0'; return buff; } static void make_results(rossler_struct *rossler) { SETFLOAT(&rossler -> search_out[0], rossler -> lyap_exp); SETSYMBOL(&rossler -> search_out[1], gensym(classify(rossler))); SETFLOAT(&rossler -> search_out[2], rossler -> failure_ratio); SETFLOAT(&rossler -> vars_out[M_x], rossler -> vars[M_x]); SETFLOAT(&rossler -> vars_out[M_y], rossler -> vars[M_y]); SETFLOAT(&rossler -> vars_out[M_z], rossler -> vars[M_z]); SETFLOAT(&rossler -> params_out[M_h], rossler -> h); SETFLOAT(&rossler -> params_out[M_a], rossler -> a); SETFLOAT(&rossler -> params_out[M_b], rossler -> b); SETFLOAT(&rossler -> params_out[M_c], rossler -> c); outlet_list(rossler -> params_outlet, gensym("list"), M_param_count, rossler -> params_out); outlet_list(rossler -> vars_outlet, gensym("list"), M_var_count, rossler -> vars_out); } static void show(rossler_struct *rossler) { make_results(rossler); outlet_anything(rossler -> search_outlet, gensym("show"), M_search_count, rossler -> search_out); } static void param(rossler_struct *rossler, t_symbol *s, int argc, t_atom *argv) { if (argc != 4) { post("Incorrect number of arguments for rossler fractal. Expecting 4 arguments."); return; } rossler -> h = (double) atom_getfloatarg(0, argc, argv); rossler -> a = (double) atom_getfloatarg(1, argc, argv); rossler -> b = (double) atom_getfloatarg(2, argc, argv); rossler -> c = (double) atom_getfloatarg(3, argc, argv); } static void seed(rossler_struct *rossler, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(rossler_struct *rossler, t_floatarg l, t_floatarg h, t_floatarg lim) { rossler -> lyap_lo = l; rossler -> lyap_hi = h; rossler -> lyap_limit = (double) ((int) lim); } static void elyap(rossler_struct *rossler) { double results[M_var_count]; int i; if (lyapunov_full((void *) rossler, (t_gotfn) calc, M_var_count, rossler -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(rossler_struct *rossler) { if (rossler -> h_lo < M_h_lo) { rossler -> h_lo = M_h_lo; } if (rossler -> h_lo > M_h_hi) { rossler -> h_lo = M_h_hi; } if (rossler -> h_hi < M_h_lo) { rossler -> h_hi = M_h_lo; } if (rossler -> h_hi > M_h_hi) { rossler -> h_hi = M_h_hi; } if (rossler -> a_lo < M_a_lo) { rossler -> a_lo = M_a_lo; } if (rossler -> a_lo > M_a_hi) { rossler -> a_lo = M_a_hi; } if (rossler -> a_hi < M_a_lo) { rossler -> a_hi = M_a_lo; } if (rossler -> a_hi > M_a_hi) { rossler -> a_hi = M_a_hi; } if (rossler -> b_lo < M_b_lo) { rossler -> b_lo = M_b_lo; } if (rossler -> b_lo > M_b_hi) { rossler -> b_lo = M_b_hi; } if (rossler -> b_hi < M_b_lo) { rossler -> b_hi = M_b_lo; } if (rossler -> b_hi > M_b_hi) { rossler -> b_hi = M_b_hi; } if (rossler -> c_lo < M_c_lo) { rossler -> c_lo = M_c_lo; } if (rossler -> c_lo > M_c_hi) { rossler -> c_lo = M_c_hi; } if (rossler -> c_hi < M_c_lo) { rossler -> c_hi = M_c_lo; } if (rossler -> c_hi > M_c_hi) { rossler -> c_hi = M_c_hi; } } static void constrain(rossler_struct *rossler, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges rossler -> h_lo = M_h_lo; rossler -> h_hi = M_h_hi; rossler -> a_lo = M_a_lo; rossler -> a_hi = M_a_hi; rossler -> b_lo = M_b_lo; rossler -> b_hi = M_b_hi; rossler -> c_lo = M_c_lo; rossler -> c_hi = M_c_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double h_spread = ((M_h_hi - M_h_lo) * percent) / 2; double a_spread = ((M_a_hi - M_a_lo) * percent) / 2; double b_spread = ((M_b_hi - M_b_lo) * percent) / 2; double c_spread = ((M_c_hi - M_c_lo) * percent) / 2; rossler -> h_lo = rossler -> h - h_spread; rossler -> h_hi = rossler -> h + h_spread; rossler -> a_lo = rossler -> a - a_spread; rossler -> a_hi = rossler -> a + a_spread; rossler -> b_lo = rossler -> b - b_spread; rossler -> b_hi = rossler -> b + b_spread; rossler -> c_lo = rossler -> c - c_spread; rossler -> c_hi = rossler -> c + c_spread; limiter(rossler); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for rossler constraints, requires 8 values, got %d", argc); return; } rossler -> h_lo = atom_getfloat(arg++); rossler -> h_hi = atom_getfloat(arg++); rossler -> a_lo = atom_getfloat(arg++); rossler -> a_hi = atom_getfloat(arg++); rossler -> b_lo = atom_getfloat(arg++); rossler -> b_hi = atom_getfloat(arg++); rossler -> c_lo = atom_getfloat(arg++); rossler -> c_hi = atom_getfloat(arg++); limiter(rossler); } static void search(rossler_struct *rossler, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = rossler -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_h = rossler -> h; double temp_a = rossler -> a; double temp_b = rossler -> b; double temp_c = rossler -> c; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], rossler -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: rossler -> h = (drand48() * (rossler -> h_hi - rossler -> h_lo)) + rossler -> h_lo; rossler -> a = (drand48() * (rossler -> a_hi - rossler -> a_lo)) + rossler -> a_lo; rossler -> b = (drand48() * (rossler -> b_hi - rossler -> b_lo)) + rossler -> b_lo; rossler -> c = (drand48() * (rossler -> c_hi - rossler -> c_lo)) + rossler -> c_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(rossler, NULL, argc, vars); do { calc(rossler, rossler -> vars); } while(jump--); rossler -> lyap_exp = lyapunov((void *) rossler, (t_gotfn) calc, M_var_count, (double *) rossler -> vars); if (isnan(rossler -> lyap_exp)) { not_found = 1; } if (rossler -> lyap_exp < rossler -> lyap_lo || rossler -> lyap_exp > rossler -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(rossler, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) rossler -> lyap_limit); post("Try using wider constraints."); rossler -> h = temp_h; rossler -> a = temp_a; rossler -> b = temp_b; rossler -> c = temp_c; outlet_anything(rossler -> search_outlet, gensym("invalid"), 0, NULL); } else { rossler -> failure_ratio = (rossler -> lyap_limit - not_expired) / rossler -> lyap_limit; make_results(rossler); outlet_anything(rossler -> search_outlet, gensym("search"), M_search_count, rossler -> search_out); } } void *rossler_new(t_symbol *s, int argc, t_atom *argv) { rossler_struct *rossler = (rossler_struct *) pd_new(rossler_class); if (rossler != NULL) { outlet_new(&rossler -> x_obj, &s_float); rossler -> outlets[0] = outlet_new(&rossler -> x_obj, &s_float); rossler -> outlets[1] = outlet_new(&rossler -> x_obj, &s_float); rossler -> search_outlet = outlet_new(&rossler -> x_obj, &s_list); rossler -> vars_outlet = outlet_new(&rossler -> x_obj, &s_list); rossler -> params_outlet = outlet_new(&rossler -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { rossler -> vars_init[M_x] = rossler -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv); rossler -> vars_init[M_y] = rossler -> vars[M_y] = (double) atom_getfloatarg(1, argc, argv); rossler -> vars_init[M_z] = rossler -> vars[M_z] = (double) atom_getfloatarg(2, argc, argv); rossler -> h = (double) atom_getfloatarg(3, argc, argv); rossler -> a = (double) atom_getfloatarg(4, argc, argv); rossler -> b = (double) atom_getfloatarg(5, argc, argv); rossler -> c = (double) atom_getfloatarg(6, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for rossler fractal. Expecting 7 arguments."); } rossler -> vars_init[M_x] = 0.1; rossler -> vars_init[M_y] = 0; rossler -> vars_init[M_z] = 0; rossler -> h = 0.01; rossler -> a = 0.2; rossler -> b = 0.2; rossler -> c = 5.7; } constrain(rossler, NULL, 0, NULL); lyap(rossler, -1000000.0, 1000000.0, M_failure_limit); } return (void *)rossler; } void rossler_setup(void) { rossler_class = class_new(gensym("rossler"), (t_newmethod) rossler_new, 0, sizeof(rossler_struct), 0, A_GIMME, 0); class_addbang(rossler_class, (t_method) calculate); class_addmethod(rossler_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(rossler_class, (t_method) show, gensym("show"), 0); class_addmethod(rossler_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(rossler_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(rossler_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(rossler_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(rossler_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(rossler_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); class_sethelpsymbol(rossler_class, gensym("help-rossler.pd")); }