/* three_d Attractor PD External */ /* Copyright Michael McGonagle, from Cliff Pickover, 2003 */ /* This program is distributed under the params of the GNU Public License */ /////////////////////////////////////////////////////////////////////////////////// /* This file is part of Chaos PD Externals. */ /* */ /* Chaos PD Externals are free software; you can redistribute them and/or modify */ /* them under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* Chaos PD Externals are distributed in the hope that they will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with the Chaos PD Externals; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "chaos.h" #define M_a_lo -1000 #define M_a_hi 1000 #define M_b_lo -1000 #define M_b_hi 1000 #define M_c_lo -1000 #define M_c_hi 1000 #define M_d_lo -1000 #define M_d_hi 1000 #define M_e_lo -1000 #define M_e_hi 1000 #define M_a 0 #define M_b 1 #define M_c 2 #define M_d 3 #define M_e 4 #define M_x 0 #define M_y 1 #define M_z 2 #define M_param_count 5 #define M_var_count 3 #define M_search_count 3 #define M_failure_limit 1000 static char *version = "three_d v0.0, by Michael McGonagle, from Cliff Pickover, 2003"; t_class *three_d_class; typedef struct three_d_struct { t_object x_obj; double vars[M_var_count]; double vars_init[M_var_count]; t_atom vars_out[M_var_count]; t_outlet *vars_outlet; t_atom search_out[M_search_count]; t_outlet *search_outlet; double a, a_lo, a_hi, b, b_lo, b_hi, c, c_lo, c_hi, d, d_lo, d_hi, e, e_lo, e_hi; t_atom params_out[M_param_count]; t_outlet *params_outlet; double lyap_exp, lyap_lo, lyap_hi, lyap_limit, failure_ratio; t_outlet *outlets[M_var_count - 1]; } three_d_struct; static void calc(three_d_struct *three_d, double *vars) { double x_0, y_0, z_0; x_0 =sin(three_d -> a*vars[M_y])-vars[M_z]*cos(three_d -> b*vars[M_x]); y_0 =vars[M_z]*sin(three_d -> c*vars[M_x])-cos(three_d -> d*vars[M_y]); z_0 =three_d -> e*sin(vars[M_x]); vars[M_x] = x_0; vars[M_y] = y_0; vars[M_z] = z_0; } // end calc static void calculate(three_d_struct *three_d) { calc(three_d, three_d -> vars); outlet_float(three_d -> outlets[M_z - 1], three_d -> vars[M_z]); outlet_float(three_d -> outlets[M_y - 1], three_d -> vars[M_y]); outlet_float(three_d -> x_obj.ob_outlet, three_d -> vars[M_x]); } // end calculate static void reset(three_d_struct *three_d, t_symbol *s, int argc, t_atom *argv) { if (argc == M_var_count) { three_d -> vars[M_x] = (double) atom_getfloatarg(M_x, argc, argv); three_d -> vars[M_y] = (double) atom_getfloatarg(M_y, argc, argv); three_d -> vars[M_z] = (double) atom_getfloatarg(M_z, argc, argv); } else { three_d -> vars[M_x] = three_d -> vars_init[M_x]; three_d -> vars[M_y] = three_d -> vars_init[M_y]; three_d -> vars[M_z] = three_d -> vars_init[M_z]; } // end if } // end reset static char *classify(three_d_struct *three_d) { static char buff[6]; char *c = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; buff[0] = c[(int) (((three_d -> a - M_a_lo) * (1.0 / (M_a_hi - M_a_lo))) * 26)]; buff[1] = c[(int) (((three_d -> b - M_b_lo) * (1.0 / (M_b_hi - M_b_lo))) * 26)]; buff[2] = c[(int) (((three_d -> c - M_c_lo) * (1.0 / (M_c_hi - M_c_lo))) * 26)]; buff[3] = c[(int) (((three_d -> d - M_d_lo) * (1.0 / (M_d_hi - M_d_lo))) * 26)]; buff[4] = c[(int) (((three_d -> e - M_e_lo) * (1.0 / (M_e_hi - M_e_lo))) * 26)]; buff[5] = '\0'; return buff; } static void make_results(three_d_struct *three_d) { SETFLOAT(&three_d -> search_out[0], three_d -> lyap_exp); SETSYMBOL(&three_d -> search_out[1], gensym(classify(three_d))); SETFLOAT(&three_d -> search_out[2], three_d -> failure_ratio); SETFLOAT(&three_d -> vars_out[M_x], three_d -> vars[M_x]); SETFLOAT(&three_d -> vars_out[M_y], three_d -> vars[M_y]); SETFLOAT(&three_d -> vars_out[M_z], three_d -> vars[M_z]); SETFLOAT(&three_d -> params_out[M_a], three_d -> a); SETFLOAT(&three_d -> params_out[M_b], three_d -> b); SETFLOAT(&three_d -> params_out[M_c], three_d -> c); SETFLOAT(&three_d -> params_out[M_d], three_d -> d); SETFLOAT(&three_d -> params_out[M_e], three_d -> e); outlet_list(three_d -> params_outlet, gensym("list"), M_param_count, three_d -> params_out); outlet_list(three_d -> vars_outlet, gensym("list"), M_var_count, three_d -> vars_out); } static void show(three_d_struct *three_d) { make_results(three_d); outlet_anything(three_d -> search_outlet, gensym("show"), M_search_count, three_d -> search_out); } static void param(three_d_struct *three_d, t_symbol *s, int argc, t_atom *argv) { if (argc != 5) { post("Incorrect number of arguments for three_d fractal. Expecting 5 arguments."); return; } three_d -> a = (double) atom_getfloatarg(0, argc, argv); three_d -> b = (double) atom_getfloatarg(1, argc, argv); three_d -> c = (double) atom_getfloatarg(2, argc, argv); three_d -> d = (double) atom_getfloatarg(3, argc, argv); three_d -> e = (double) atom_getfloatarg(4, argc, argv); } static void seed(three_d_struct *three_d, t_symbol *s, int argc, t_atom *argv) { if (argc > 0) { srand48(((unsigned int)time(0))|1); } else { srand48((unsigned int) atom_getfloatarg(0, argc, argv)); } } static void lyap(three_d_struct *three_d, t_floatarg l, t_floatarg h, t_floatarg lim) { three_d -> lyap_lo = l; three_d -> lyap_hi = h; three_d -> lyap_limit = (double) ((int) lim); } static void elyap(three_d_struct *three_d) { double results[M_var_count]; int i; if (lyapunov_full((void *) three_d, (t_gotfn) calc, M_var_count, three_d -> vars, results) != NULL) { post("elyapunov:"); for(i = 0; i < M_var_count; i++) { post("%d: %3.80f", i, results[i]); } } } static void limiter(three_d_struct *three_d) { if (three_d -> a_lo < M_a_lo) { three_d -> a_lo = M_a_lo; } if (three_d -> a_lo > M_a_hi) { three_d -> a_lo = M_a_hi; } if (three_d -> a_hi < M_a_lo) { three_d -> a_hi = M_a_lo; } if (three_d -> a_hi > M_a_hi) { three_d -> a_hi = M_a_hi; } if (three_d -> b_lo < M_b_lo) { three_d -> b_lo = M_b_lo; } if (three_d -> b_lo > M_b_hi) { three_d -> b_lo = M_b_hi; } if (three_d -> b_hi < M_b_lo) { three_d -> b_hi = M_b_lo; } if (three_d -> b_hi > M_b_hi) { three_d -> b_hi = M_b_hi; } if (three_d -> c_lo < M_c_lo) { three_d -> c_lo = M_c_lo; } if (three_d -> c_lo > M_c_hi) { three_d -> c_lo = M_c_hi; } if (three_d -> c_hi < M_c_lo) { three_d -> c_hi = M_c_lo; } if (three_d -> c_hi > M_c_hi) { three_d -> c_hi = M_c_hi; } if (three_d -> d_lo < M_d_lo) { three_d -> d_lo = M_d_lo; } if (three_d -> d_lo > M_d_hi) { three_d -> d_lo = M_d_hi; } if (three_d -> d_hi < M_d_lo) { three_d -> d_hi = M_d_lo; } if (three_d -> d_hi > M_d_hi) { three_d -> d_hi = M_d_hi; } if (three_d -> e_lo < M_e_lo) { three_d -> e_lo = M_e_lo; } if (three_d -> e_lo > M_e_hi) { three_d -> e_lo = M_e_hi; } if (three_d -> e_hi < M_e_lo) { three_d -> e_hi = M_e_lo; } if (three_d -> e_hi > M_e_hi) { three_d -> e_hi = M_e_hi; } } static void constrain(three_d_struct *three_d, t_symbol *s, int argc, t_atom *argv) { int i; t_atom *arg = argv; if (argc == 0) { // reset to full limits of search ranges three_d -> a_lo = M_a_lo; three_d -> a_hi = M_a_hi; three_d -> b_lo = M_b_lo; three_d -> b_hi = M_b_hi; three_d -> c_lo = M_c_lo; three_d -> c_hi = M_c_hi; three_d -> d_lo = M_d_lo; three_d -> d_hi = M_d_hi; three_d -> e_lo = M_e_lo; three_d -> e_hi = M_e_hi; return; } if (argc == 1) { // set the ranges based on percentage of full range double percent = atom_getfloat(arg); double a_spread = ((M_a_hi - M_a_lo) * percent) / 2; double b_spread = ((M_b_hi - M_b_lo) * percent) / 2; double c_spread = ((M_c_hi - M_c_lo) * percent) / 2; double d_spread = ((M_d_hi - M_d_lo) * percent) / 2; double e_spread = ((M_e_hi - M_e_lo) * percent) / 2; three_d -> a_lo = three_d -> a - a_spread; three_d -> a_hi = three_d -> a + a_spread; three_d -> b_lo = three_d -> b - b_spread; three_d -> b_hi = three_d -> b + b_spread; three_d -> c_lo = three_d -> c - c_spread; three_d -> c_hi = three_d -> c + c_spread; three_d -> d_lo = three_d -> d - d_spread; three_d -> d_hi = three_d -> d + d_spread; three_d -> e_lo = three_d -> e - e_spread; three_d -> e_hi = three_d -> e + e_spread; limiter(three_d); return; } if (argc != M_param_count * 2) { post("Invalid number of arguments for three_d constraints, requires 10 values, got %d", argc); return; } three_d -> a_lo = atom_getfloat(arg++); three_d -> a_hi = atom_getfloat(arg++); three_d -> b_lo = atom_getfloat(arg++); three_d -> b_hi = atom_getfloat(arg++); three_d -> c_lo = atom_getfloat(arg++); three_d -> c_hi = atom_getfloat(arg++); three_d -> d_lo = atom_getfloat(arg++); three_d -> d_hi = atom_getfloat(arg++); three_d -> e_lo = atom_getfloat(arg++); three_d -> e_hi = atom_getfloat(arg++); limiter(three_d); } static void search(three_d_struct *three_d, t_symbol *s, int argc, t_atom *argv) { int not_found, not_expired = three_d -> lyap_limit; int jump, i, iterations; t_atom vars[M_var_count]; double temp_a = three_d -> a; double temp_b = three_d -> b; double temp_c = three_d -> c; double temp_d = three_d -> d; double temp_e = three_d -> e; if (argc > 0) { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], atom_getfloatarg(i, argc, argv)); } } else { for (i = 0; i < M_var_count; i++) { SETFLOAT(&vars[i], three_d -> vars_init[i]); } } do { jump = 500; not_found = 0; iterations = 10000; bad_params: three_d -> a = (drand48() * (three_d -> a_hi - three_d -> a_lo)) + three_d -> a_lo; three_d -> b = (drand48() * (three_d -> b_hi - three_d -> b_lo)) + three_d -> b_lo; three_d -> c = (drand48() * (three_d -> c_hi - three_d -> c_lo)) + three_d -> c_lo; three_d -> d = (drand48() * (three_d -> d_hi - three_d -> d_lo)) + three_d -> d_lo; three_d -> e = (drand48() * (three_d -> e_hi - three_d -> e_lo)) + three_d -> e_lo; // put any preliminary checks specific to this fractal to eliminate bad_params reset(three_d, NULL, argc, vars); do { calc(three_d, three_d -> vars); } while(jump--); three_d -> lyap_exp = lyapunov((void *) three_d, (t_gotfn) calc, M_var_count, (double *) three_d -> vars); if (isnan(three_d -> lyap_exp)) { not_found = 1; } if (three_d -> lyap_exp < three_d -> lyap_lo || three_d -> lyap_exp > three_d -> lyap_hi) { not_found = 1; } not_expired--; } while(not_found && not_expired); reset(three_d, NULL, argc, vars); if (!not_expired) { post("Could not find a fractal after %d attempts.", (int) three_d -> lyap_limit); post("Try using wider constraints."); three_d -> a = temp_a; three_d -> b = temp_b; three_d -> c = temp_c; three_d -> d = temp_d; three_d -> e = temp_e; outlet_anything(three_d -> search_outlet, gensym("invalid"), 0, NULL); } else { three_d -> failure_ratio = (three_d -> lyap_limit - not_expired) / three_d -> lyap_limit; make_results(three_d); outlet_anything(three_d -> search_outlet, gensym("search"), M_search_count, three_d -> search_out); } } void *three_d_new(t_symbol *s, int argc, t_atom *argv) { three_d_struct *three_d = (three_d_struct *) pd_new(three_d_class); if (three_d != NULL) { outlet_new(&three_d -> x_obj, &s_float); three_d -> outlets[0] = outlet_new(&three_d -> x_obj, &s_float); three_d -> outlets[1] = outlet_new(&three_d -> x_obj, &s_float); three_d -> search_outlet = outlet_new(&three_d -> x_obj, &s_list); three_d -> vars_outlet = outlet_new(&three_d -> x_obj, &s_list); three_d -> params_outlet = outlet_new(&three_d -> x_obj, &s_list); if (argc == M_param_count + M_var_count) { three_d -> vars_init[M_x] = three_d -> vars[M_x] = (double) atom_getfloatarg(0, argc, argv); three_d -> vars_init[M_y] = three_d -> vars[M_y] = (double) atom_getfloatarg(1, argc, argv); three_d -> vars_init[M_z] = three_d -> vars[M_z] = (double) atom_getfloatarg(2, argc, argv); three_d -> a = (double) atom_getfloatarg(3, argc, argv); three_d -> b = (double) atom_getfloatarg(4, argc, argv); three_d -> c = (double) atom_getfloatarg(5, argc, argv); three_d -> d = (double) atom_getfloatarg(6, argc, argv); three_d -> e = (double) atom_getfloatarg(7, argc, argv); } else { if (argc != 0 && argc != M_param_count + M_var_count) { post("Incorrect number of arguments for three_d fractal. Expecting 8 arguments."); } three_d -> vars_init[M_x] = 0; three_d -> vars_init[M_y] = 0; three_d -> vars_init[M_z] = 0; three_d -> a = 2.24; three_d -> b = 0.43; three_d -> c = -0.65; three_d -> d = -2.43; three_d -> e = 1; } constrain(three_d, NULL, 0, NULL); lyap(three_d, -1000000.0, 1000000.0, M_failure_limit); } return (void *)three_d; } void three_d_setup(void) { three_d_class = class_new(gensym("three_d"), (t_newmethod) three_d_new, 0, sizeof(three_d_struct), 0, A_GIMME, 0); class_addbang(three_d_class, (t_method) calculate); class_addmethod(three_d_class, (t_method) reset, gensym("reset"), A_GIMME, 0); class_addmethod(three_d_class, (t_method) show, gensym("show"), 0); class_addmethod(three_d_class, (t_method) param, gensym("param"), A_GIMME, 0); class_addmethod(three_d_class, (t_method) seed, gensym("seed"), A_GIMME, 0); class_addmethod(three_d_class, (t_method) lyap, gensym("lyapunov"), A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); class_addmethod(three_d_class, (t_method) elyap, gensym("elyapunov"), 0); class_addmethod(three_d_class, (t_method) search, gensym("search"), A_GIMME, 0); class_addmethod(three_d_class, (t_method) constrain, gensym("constrain"), A_GIMME, 0); }