aboutsummaryrefslogtreecommitdiff
path: root/modules++/DSPIcomplex.h
diff options
context:
space:
mode:
Diffstat (limited to 'modules++/DSPIcomplex.h')
-rw-r--r--modules++/DSPIcomplex.h191
1 files changed, 191 insertions, 0 deletions
diff --git a/modules++/DSPIcomplex.h b/modules++/DSPIcomplex.h
new file mode 100644
index 0000000..ad3e041
--- /dev/null
+++ b/modules++/DSPIcomplex.h
@@ -0,0 +1,191 @@
+/*
+ * DSPIcomplex.h - Quick and dirty inline class for complex numbers
+ * (mainly to compute filter poles/zeros, not to be used inside loops)
+ * Copyright (c) 2000 by Tom Schouten
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#ifndef DSPIcomplex_h
+#define DSPIcomplex_h
+
+#include <math.h>
+#include <iostream>
+
+class DSPIcomplex
+{
+ public:
+ inline DSPIcomplex() {_r = _i = 0;}
+ inline DSPIcomplex(const float &a, const float &b) {setCart(a, b);}
+ inline DSPIcomplex(const float &phasor) {setAngle(phasor);}
+
+ inline void setAngle(const float &angle) {_r = cos(angle); _i = sin(angle);}
+ inline void setPolar(const float &phasor, const float &norm)
+ {_r = norm * cos(phasor); _i = norm * sin(phasor);}
+ inline void setCart(const float &a, const float &b) {_r = a; _i = b;}
+
+ inline const float& r() const {return _r;}
+ inline const float& i() const {return _i;}
+
+ inline float norm2() const {return _r*_r+_i*_i;}
+ inline float norm() const {return sqrt(norm2());}
+ inline void normalize() {float n = 1.0f / norm(); _r *= n; _i *= n;}
+
+ inline DSPIcomplex conj() const {return DSPIcomplex(_r, -_i);}
+
+ inline float angle() const {return atan2(_i, _r);}
+
+
+ inline DSPIcomplex operator+ (const DSPIcomplex &a) const
+ {
+ return DSPIcomplex(_r + a.r(), _i + a.i());
+ }
+ inline DSPIcomplex operator+ (float f) const
+ {
+ return DSPIcomplex(_r + f, _i);
+ }
+ inline DSPIcomplex operator- (const DSPIcomplex &a) const
+ {
+ return DSPIcomplex(_r - a.r(), _i - a.i());
+ }
+ inline DSPIcomplex operator- (float f) const
+ {
+ return DSPIcomplex(_r - f, _i);
+ }
+
+ inline DSPIcomplex operator* (const DSPIcomplex &a) const
+ {
+ return DSPIcomplex(_r * a.r() - _i * a.i(), _i * a.r() + _r * a.i());
+ }
+ inline DSPIcomplex operator* (float f) const
+ {
+ return DSPIcomplex(_r * f, _i * f);
+ }
+ inline DSPIcomplex operator/ (const DSPIcomplex &a) const
+ {
+ float n_t = 1.0f / a.norm2();
+ return DSPIcomplex(n_t * (_r * a.r() + _i * a.i()), n_t * (_i * a.r() - _r * a.i()));
+ }
+ inline DSPIcomplex operator/ (float f) const
+ {
+ float n_t = 1.0f / f;
+ return DSPIcomplex(n_t * _r, n_t * _i);
+ }
+
+ inline friend std::ostream& operator<< (std::ostream& o, DSPIcomplex& a)
+ {
+ return o << "(" << a.r() << "," << a.i() << ")";
+ }
+
+ inline friend DSPIcomplex operator+ (float f, DSPIcomplex& a)
+ {
+ return(DSPIcomplex(a.r() + f, a.i()));
+ }
+
+ inline friend DSPIcomplex operator- (float f, DSPIcomplex& a)
+ {
+ return(DSPIcomplex(f - a.r(), - a.i()));
+ }
+
+ inline friend DSPIcomplex operator/ (float f, DSPIcomplex& a)
+ {
+ return(DSPIcomplex(f,0) / a);
+ }
+
+ // ????
+ inline friend DSPIcomplex operator* (float f, DSPIcomplex& a)
+ {
+ return(DSPIcomplex(f*a.r(), f*a.i()));
+ }
+
+
+ inline DSPIcomplex& operator *= (float f)
+ {
+ _r *= f;
+ _i *= f;
+ return *this;
+ }
+
+ inline DSPIcomplex& operator /= (float f)
+ {
+ _r /= f;
+ _i /= f;
+ return *this;
+ }
+
+ inline DSPIcomplex& operator *= (DSPIcomplex& a)
+ {
+ float r_t = _r * a.r() - _i * a.i();
+ _i = _r * a.i() + _i * a.r();
+ _r = r_t;
+
+ return *this;
+ }
+
+ inline DSPIcomplex& operator /= (DSPIcomplex& a)
+ {
+ float n_t = a.norm2();
+ float r_t = n_t * (_r * a.r() + _i * a.i());
+ _i = n_t * (_i * a.r() - _r * a.i());
+ _r = r_t;
+
+ return *this;
+ }
+
+
+ float _r;
+ float _i;
+};
+
+
+// COMPLEX LOG
+
+inline DSPIcomplex dspilog(DSPIcomplex a) /* complex log */
+{
+ float r_t = log(a.norm());
+ float i_t = a.angle();
+ return DSPIcomplex(r_t, i_t);
+}
+
+// COMPLEX EXP
+
+inline DSPIcomplex dspiexp(DSPIcomplex a) /* complex exp */
+{
+ return (DSPIcomplex(a.i()) * exp(a.r()));
+}
+
+// BILINEAR TRANSFORM analog -> digital
+
+inline DSPIcomplex bilin_stoz(DSPIcomplex a)
+{
+ DSPIcomplex a2 = a * 0.5f;
+ return((1.0f + a2)/(1.0f - a2));
+}
+
+// BILINEAR TRANSFORM digital -> analog
+
+inline DSPIcomplex bilin_ztos(DSPIcomplex a)
+{
+ return ((a - 1.0f) / (a + 1.0f))*2.0f;
+}
+
+// not really a complex function but a nice complement to the bilinear routines
+
+inline float bilin_prewarp(float freq)
+{
+ return 2.0f * tan(M_PI * freq);
+}
+
+#endif //DSPIcomplex_h