aboutsummaryrefslogtreecommitdiff
path: root/modules++/DSPIfilters.h
blob: 4fa53ea039fd79eef38a8f31fa86466fab96f634 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*
 *   DSPIfilters.h - Inline classes for biquad filters 
 *   Copyright (c) 2000 by Tom Schouten
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#ifndef DSPIfilters_h
#define DSPIfilters_h


#include "DSPIcomplex.h"
#include "DSPI.h"
//#include <stdio.h>

/* orthogonal biquad */

class DSPIfilterOrtho {
    public:

        inline DSPIfilterOrtho(){resetState();resetCoef();resetSCoef();}
        inline ~DSPIfilterOrtho(){}

        inline void resetState(){d1A = d1B = d2A = d2B = 0.0;}
        inline void resetCoef(){ai = ar = c0 = c1 = c2 = 0.0;}
        inline void resetSCoef(){s_ai = s_ar = s_c0 = s_c1 = s_c2 = 0.0;}
        
        /*
         *		Biquad filters remarks
         *
         *		Q is defined with reference to the analog prototype:
         *		poles/zeros = w0 * (1/Q +- sqrt(1 - 1/Q^2))
         *
         *		the num/den polynomial then has the form:
         *		1 + 2s/Qw0 + (s/w0)^2
         *
         *		if Q < 1 => real valued poles/zeros
         *		if Q > 1 => complex values poles/zeros
         *		if Q = inf => imaginary poles/zeros
         *		if Q = sqrt(2) => 'maximally flat' poles/zeros
         *
         *		the analog prototypes are converted to the digital domain
         *		using the bilinear transform. hence the prewarping.
         */
        
        // make sure freq and Q are positive and within bounds
        inline void checkBounds(t_float &freq, t_float &Q)
        {
            freq = fabs(freq);
            Q = fabs(Q);

            t_float epsilon = .0001; // stability guard
            t_float fmin = 0.0 + epsilon;
            t_float fmax = 0.5 - epsilon;
            t_float Qmin = 1.1;

            if (freq < fmin) freq = fmin; 
            if (freq > fmax) freq = fmax;
            
            if (Q < Qmin) Q = Qmin;
            
        }
        
        inline void setAP(t_float freq, t_float Q) // allpass
        {
    
            // prototype: H(s) = (1 - 2s/Qw0 + (s/w0)^2) / (1 + 2s/Qw0 + (s/w0)^2)
            // s_p = - s_z (analog: symmetric wrt. im axis)
            // z_p = 1/z_z (digiatl: summ wrt. unit circle)
            checkBounds(freq, Q);

            // prewarp for bilin transfo
            freq = bilin_prewarp(freq);
            t_float zeta = 1.0/Q;
        
            DSPIcomplex p = bilin_stoz(DSPIcomplex(-zeta, (1.0-zeta*zeta))*freq);
            DSPIcomplex z = 1.0 / p;
            setPoleZeroNormalized(p, z, DSPIcomplex(1,0));
        
        
        }
        inline void setLP(t_float freq, t_float Q) // low pass
        {
            // prototype: H(s) = 1 / (1 + 2s/Qw0 + (s/w0)^2)
            // the bilinear transform has 2 zeros at NY
             
            checkBounds(freq, Q);
            freq = bilin_prewarp(freq);
            t_float zeta = 1/Q;
            
            DSPIcomplex p = bilin_stoz(DSPIcomplex(-zeta, (1.0-zeta*zeta))*freq);
            setPoleZeroNormalized(p, DSPIcomplex(-1, 0), DSPIcomplex(1, 0));
            
        }
        inline void setHP(t_float freq, t_float Q) // hi pass
        {
            // prototype: H(s) = (s/w0)^2 / (1 + 2s/Qw0 + (s/w0)^2)
            // the bilinear transform has 2 zeros at DC
             
            checkBounds(freq, Q);
            freq = bilin_prewarp(freq);
            t_float zeta = 1/Q;
            
            DSPIcomplex p = bilin_stoz(DSPIcomplex(-zeta, (1.0-zeta*zeta))*freq);
            setPoleZeroNormalized(p, DSPIcomplex(1, 0), DSPIcomplex(-1, 0));
            
        }

        inline void setBP(t_float freq, t_float Q) // band pass (1-allpass)
        {
            // prototype: 1/2 * (1 - H_allpass(z))
            setAP(freq, Q);
            t_float h = -0.5;
            c0 *= h;
            c1 *= h;
            c2 *= h;
            c0 -= h;
  
        }

        inline void setBR(t_float freq, t_float Q) // band reject
        {
            // prototype: H(s) = (1 - (s/w0)^2) / (1 + 2s/Qw0 + (s/w0)^2)
            checkBounds(freq, Q);
            // pole phasor
            DSPIcomplex z = DSPIcomplex(2.0 * M_PI * freq);
            
            // prewarp for bilin transfo
            freq = bilin_prewarp(freq);
            t_float zeta = 1/Q;
        
            DSPIcomplex p = bilin_stoz(DSPIcomplex(-zeta, (1.0-zeta*zeta))*freq);
            setPoleZeroNormalized(p, z, DSPIcomplex(1,0)); 
        }
        
        inline void setHS(t_float freq, t_float gain) // low shelf
        {
            // hi shelf = LP - g(LP-1)
            t_float Q = M_SQRT2;
            setLP(freq, Q); 
            c0 -= gain * (c0 - 1.0);
            c1 -= gain * (c1);
            c2 -= gain * (c2);
        }

        inline void setLS(t_float freq, t_float gain) // low shelf
        {
            // hi shelf = HP - g(HP-1)
            t_float Q = M_SQRT2;
            setHP(freq, Q); 
            c0 -= gain * (c0 - 1.0);
            c1 -= gain * (c1);
            c2 -= gain * (c2);
        }
        inline void setEQ(t_float freq, t_float Q, t_float gain)// param EQ
        {
            // EQ = (1+A)/2 + (1-A)/2 AP

            t_float a0 = 0.5 * (1.0 + gain);
            t_float a1 = 0.5 * (1.0 - gain);
            setAP(freq, Q);
            c0 *= a1;
            c1 *= a1;
            c2 *= a1;
            c0 += a0;
        }
        
        inline void setPoleZero
        (
            const DSPIcomplex& a, // pole
            const DSPIcomplex& b  // zero
        )
        {
            ar = a.r();
            ai = a.i();
            
            c0 = 1.0;
            c1 = 2.0 * (a.r() - b.r());
            c2 = (a.norm2() - b.norm2() - c1 * a.r()) / a.i();
        }

        
        inline void setPoleZeroNormalized
        (
            const DSPIcomplex& a, // pole
            const DSPIcomplex& b, // zero
            const DSPIcomplex& c  // gain = 1 at this freq
        )
        {
            setPoleZero(a, b);
            DSPIcomplex invComplexGain = ((c-a)*(c-a.conj()))/((c-b)*(c-b.conj()));
            t_float invGain = invComplexGain.norm();
            c0 *= invGain;
            c1 *= invGain;
            c2 *= invGain;
            
        }        

        
        // one channel bang
        inline void Bang
        (
            t_float &input, 
            t_float &output
        )
        {
            t_float d1t = ar * d1A + ai * d2A + input;
            t_float d2t = ar * d2A - ai * d1A;
            output = c0 * input + c1 * d1A + c2 * d2A;
            d1A = d1t;
            d2A = d2t;
        }
        
        // one channel bang smooth
        // a default s could be s = (1 - (.1)^(1/n))
        inline void BangSmooth
        (
            t_float &input, 	// input ref
            t_float &output,	// output ref
            t_float s 		// smooth pole
        )
        {
            t_float d1t = s_ar * d1A + s_ai * d2A + input;
            t_float d2t = s_ar * d2A - s_ai * d1A;
            s_ar += s * (ar - s_ar);
            s_ai += s * (ai - s_ai);
            output = s_c0 * input + s_c1 * d1A + s_c2 * d2A;
            d1A = d1t;
            d2A = d2t;
            s_c0 += s * (c0 - s_c0);
            s_c1 += s * (c1 - s_c1);
            s_c2 += s * (c2 - s_c2);
        }
        
        // two channel bang
        inline void Bang2
        (
            t_float &input1, 
            t_float &input2, 
            t_float &output1, 
            t_float &output2 
        )
        {
            t_float d1tA = ar * d1A + ai * d2A + input1;
            t_float d1tB = ar * d1B + ai * d2B + input2;
            t_float d2tA = ar * d2A - ai * d1A;
            t_float d2tB = ar * d2B - ai * d1B;
            output1 = c0 * input1 + d1A * c1 + d2A * c2;
            output2 = c0 * input2 + d1B * c1 + d2B * c2;
            d1A = d1tA;
            d2A = d2tA;
            d1B = d1tB;
            d2B = d2tB;
        }

        // two channel bang smooth
        inline void Bang2Smooth
        (
            t_float &input1, 
            t_float &input2, 
            t_float &output1, 
            t_float &output2,
            t_float s 
        )
        {
            t_float d1tA = s_ar * d1A + s_ai * d2A + input1;
            t_float d1tB = s_ar * d1B + s_ai * d2B + input2;
            t_float d2tA = s_ar * d2A - s_ai * d1A;
            t_float d2tB = s_ar * d2B - s_ai * d1B;
            s_ar += s * (ar - s_ar);
            s_ai += s * (ai - s_ai);
            output1 = s_c0 * input1 + d1A * s_c1 + d2A * s_c2;
            output2 = s_c0 * input2 + d1B * s_c1 + d2B * s_c2;
            d1A = d1tA;
            d2A = d2tA;
            d1B = d1tB;
            d2B = d2tB;
            s_c0 += s * (c0 - s_c0);
            s_c1 += s * (c1 - s_c1);
            s_c2 += s * (c2 - s_c2);
        }

	inline void killDenormals()
	{

	    // state data
	    t_float zero = 0.0;

	    d1A = DSPI_IS_DENORMAL(d1A) ? zero : d1A;
	    d2A = DSPI_IS_DENORMAL(d2A) ? zero : d2A;
	    d1B = DSPI_IS_DENORMAL(d1B) ? zero : d1B;
	    d2B = DSPI_IS_DENORMAL(d2B) ? zero : d2B;


	    /* test on athlon showed nuking smooth data does not
	     * present a noticable difference in performance however
	     * nuking state data is really necessary


	    // smooth data
	    t_float dai = ai - s_ai;
 	    t_float dar = ar - s_ar;
	    t_float dc0 = c0 - s_c0;
	    t_float dc1 = c1 - s_c1;
	    t_float dc2 = c2 - s_c2;


	    s_ai = DSPI_IS_DENORMAL(dai) ? ai : s_ai;
	    s_ar = DSPI_IS_DENORMAL(dar) ? ar : s_ar;
	    s_c0 = DSPI_IS_DENORMAL(dc0) ? c0 : s_c0;
	    s_c1 = DSPI_IS_DENORMAL(dc0) ? c1 : s_c1;
	    s_c2 = DSPI_IS_DENORMAL(dc0) ? c2 : s_c2;

	    */



	}
        
    private:
    
        // state data
        t_float d1A;
        t_float d2A;

        t_float d1B;
        t_float d2B;
        
        // pole data
        t_float ai;
        t_float s_ai;
        t_float ar;
        t_float s_ar;
        
        // zero data
        t_float c0;
        t_float s_c0;
        t_float c1;
        t_float s_c1;
        t_float c2;
        t_float s_c2;
        

};



class DSPIfilterSeries{
    public:
        inline DSPIfilterSeries() {DSPIfilterSeries(1);}
        inline ~DSPIfilterSeries() {delete [] biquad;};
        
        inline DSPIfilterSeries(int numberOfSections)
        {
            // create a set of biquads
            sections = numberOfSections;
            biquad = new DSPIfilterOrtho[numberOfSections];
        }

        inline void setButterHP(t_float freq)
        {
            /*  This member function computes the poles for a highpass butterworth filter.
             *  The filter is transformed to the digital domain using a bilinear transform.
             *  Every biquad section is normalized at NY.
             */
             
            t_float epsilon = .0001; // stability guard
            t_float min = 0.0 + epsilon;
            t_float max = 0.5 - epsilon;

            if (freq < min) freq = min; 
            if (freq > max) freq = max; 

            // prewarp cutoff frequency
            t_float omega = bilin_prewarp(freq);

            DSPIcomplex NY(-1,0);  //normalize at NY
            DSPIcomplex DC(1,0);  //all zeros will be at DC
            DSPIcomplex pole( (2*sections + 1) * M_PI / (4*sections)); // first pole of lowpass filter with omega == 1
            DSPIcomplex pole_inc(M_PI / (2*sections)); // phasor to get to next pole, see Porat p. 331
            
            for (int i=0; i<sections; i++)
            {
                // setup the biquad with the computed pole and zero and unit gain at NY
                biquad[i].setPoleZeroNormalized(
                    bilin_stoz(omega/pole),	// LP -> HP -> digital transfo 
                    DC, 					// all zeros at DC
                    NY);					// normalized (gain == 1) at NY
                pole *= pole_inc;			// compe next (lowpass) pole
            }
             
        }
        
        inline void setButterLP(t_float freq)
        {
            /*  This member function computes the poles for a lowpass butterworth filter.
             *  The filter is transformed to the digital domain using a bilinear transform.
             *  Every biquad section is normalized at DC.
             *  Doing it this way, only the pole locations need to be transformed.
             *  The constant gain factor can be computed by setting the DC gain of every section to 1.
             *  An analog butterworth is all-pole, meaning the bilinear transform has all zeros at -1
             */


            t_float epsilon = .0001; // stability guard
            t_float min = 0.0 + epsilon;
            t_float max = 0.5 - epsilon;


            if (freq < min) freq = min; 
            if (freq > max) freq = max; 

            // prewarp cutoff frequency
            t_float omega = bilin_prewarp(freq);
            
            DSPIcomplex DC(1,0);  //normalize at DC
            DSPIcomplex NY(-1,0); //all zeros will be at NY
            DSPIcomplex pole( (2*sections + 1) * M_PI / (4*sections)); 
            pole *= omega; // first pole, see Porat p. 331
            DSPIcomplex pole_inc(M_PI / (2*sections)); // phasor to get to next pole, see Porat p. 331
            
            for (int i=0; i<sections; i++)
            {
                // setup the biquad with the computed pole and zero and unit gain at DC
                biquad[i].setPoleZeroNormalized(bilin_stoz(pole), NY, DC);
                pole *= pole_inc;
            }
        }
        
        inline void resetState()
        {
            for (int i=0; i<sections; i++) biquad[i].resetState();
        }
        
        inline void Bang(t_float &input, t_float &output)
        {
            t_float x = input;
            for (int i=0; i<sections; i++)
            {
                biquad[i].Bang(x, x);
            }
            output = x;
        }
        inline void Bang2(t_float &input1, t_float &input2, t_float &output1, t_float &output2)
        {
            t_float x = input1;
            t_float y = input2;
            for (int i=0; i<sections; i++)
            {
                biquad[i].Bang2(x, y, x, y);
            }
            output1 = x;
            output2 = y;
        }
        
        inline void BangSmooth(t_float &input, t_float &output, t_float s)
        {
            t_float x = input;
            for (int i=0; i<sections; i++)
            {
                biquad[i].BangSmooth(x, x, s);
            }
            output = x;
        }
        inline void Bang2(t_float &input1, t_float &input2, t_float &output1, t_float &output2, t_float s)
        {
            t_float x = input1;
            t_float y = input2;
            for (int i=0; i<sections; i++)
            {
                biquad[i].Bang2Smooth(x, y, x, y, s);
            }
            output1 = x;
            output2 = y;
        }

    private:
        int sections;
        DSPIfilterOrtho *biquad;
        t_float gain;
};

#endif //DSPIfilters_h