aboutsummaryrefslogtreecommitdiff
path: root/modules++/blosc~.cc
blob: 8a4dd4b2e8eeae4defac94d4868cb7963b9f5650 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*
 *   blosc.c  - bandlimited oscillators 
 *   using minimum phase impulse, step & ramp
 *   Copyright (c) 2000-2003 by Tom Schouten
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */


#include "m_pd.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>  


#include "DSPIcomplex.h"
#include "DSPIfilters.h"

typedef unsigned long long u64;
typedef unsigned long u32;



#define LPHASOR      (8*sizeof(u32)) // the phasor logsize
#define VOICES       8 // the number of waveform voices
#define LLENGTH      6 // the loglength of a fractional delayed basic waveform
#define LOVERSAMPLE  6 // the log of the oversampling factor (nb of fract delayed waveforms)
#define LPAD         1 // the log of the time padding factor (to reduce time aliasing) 
#define LTABLE       (LLENGTH+LOVERSAMPLE)
#define N            (1<<LTABLE)
#define M            (1<<(LTABLE+LPAD))
#define S            (1<<LOVERSAMPLE)
#define L            (1<<LLENGTH)
#define LMASK        (L-1)

#define WALPHA       0.1f // windowing alpha (0 = cos -> 1 = rect)
#define CUTOFF       0.8f // fraction of nyquist for impulse cutoff
#define NBPERIODS    ((float)(L) * CUTOFF / 2.0f)

/* sample buffers */
static float bli[N]; // band limited impulse
static float bls[N]; // band limited step
static float blr[N]; // band limited ramp


typedef struct bloscctl
{
    t_int c_index[VOICES];      // array of indices in sample table
    t_float c_frac[VOICES];     // array of fractional indices
    t_float c_vscale[VOICES];   // array of scale factors
    t_int c_next_voice;         // next voice to steal (round robin)
    u32 c_phase;                // phase of main oscillator
    u32 c_phase2;               // phase of secondairy oscillator
    t_float c_state;            // state of the square wave
    t_float c_prev_amp;         // previous input of comparator
    t_float c_phase_inc_scale;
    t_float c_scale;
    t_float c_scale_update;
    DSPIfilterSeries* c_butter; // the series filter 
    t_symbol *c_waveform;

} t_bloscctl;

typedef struct blosc
{
  t_object x_obj;
  t_float x_f;
  t_bloscctl x_ctl;
} t_blosc;


/* phase converters */
static inline float _phase_to_float(u32 p){return ((float)p) * (1.0f / 4294967296.0f);}
static inline u32 _float_to_phase(float f){return ((u32)(f * 4294967296.0f)) & ~(S-1);}


/* flat table: better for linear interpolation */
static inline float _play_voice_lint(float *table, t_int *index, float frac, float scale)
{
    int i = *index;

    /* perform linear interpolation */
    float f = (((1.0f - frac) * table[i]) + (table[i+1] * frac)) * scale;

    /* increment phase index if next 2 elements will still be inside table
       if not there's no increment and the voice will keep playing the same sample */

    i += (((i+S+1) >> LTABLE) ^ 1) << LOVERSAMPLE; 

    *index = i;
    return f;
}

/* get one sample from the bandlimited discontinuity wavetable playback syth */
static inline t_float _get_bandlimited_discontinuity(t_bloscctl *ctl, float *table)
{
    float sum = 0.0f;
    int i;
    /* sum  all voices */
    for (i=0; i<VOICES; i++){
	sum += _play_voice_lint(table, ctl->c_index+i, ctl->c_frac[i], ctl->c_vscale[i]);
    }

    return sum;
}


/* update waveplayers on zero cross */
static void _bang_comparator(t_bloscctl *ctl, float prev, float curr)
{

    /* check for sign change */
    if ((prev * curr) < 0.0f){

	int voice;

	/* determine the location of the discontinuity (in oversampled coordiates
 	  using linear interpolation */

	float f = (float)S * curr / (curr - prev);

	/* get the offset in the oversample table */

	u32 table_index = (u32)f;

	/* determine the fractional part (in oversampled coordinates)
	   for linear interpolation */

	float table_frac_index = f - (float)table_index;

	/* set state (+ or -) */

	ctl->c_state =  (curr > 0.0f) ? 0.5f : -0.5f;
	
	/* steal the oldest voice */

	voice = ctl->c_next_voice++;
	ctl->c_next_voice &= VOICES-1;
	    
	/* initialize the new voice index and interpolation fraction */

	ctl->c_index[voice] = table_index;
	ctl->c_frac[voice] = table_frac_index;
	ctl->c_vscale[voice] = -ctl->c_scale * 2.0f * ctl->c_state;

    }

}


/* advance phasor and update waveplayers on phase wrap */
static void _bang_phasor(t_bloscctl *ctl, float freq)
{
    u32 phase = ctl->c_phase;
    u32 phase_inc; 
    u32 oldphase;
    int voice;
    float scale = ctl->c_scale;

    /* get increment */
    float inc = freq * ctl->c_phase_inc_scale;

    /* calculate new phase
       the increment (and the phase) should be a multiple of S */
    if (inc < 0.0f) inc = -inc;
    phase_inc = ((u32)inc) & ~(S-1);
    oldphase = phase;
    phase += phase_inc;


    /* check for phase wrap */
    if (phase < oldphase){
	u32 phase_inc_decimated = phase_inc >> LOVERSAMPLE;
	u32 table_index;
	u32 table_phase;
	
	/* steal the oldest voice if we have a phase wrap */
	    
	voice = ctl->c_next_voice++;
	ctl->c_next_voice &= VOICES-1;
	    
	/* determine the location of the discontinuity (in oversampled coordinates)
	   which is S * (new phase) / (increment) */
	    
	table_index = phase / phase_inc_decimated;
	    
	/* determine the fractional part (in oversampled coordinates)
	   for linear interpolation */

	table_phase = phase - (table_index * phase_inc_decimated);
	    
	/* use it to initialize the new voice index and interpolation fraction */
	    
	ctl->c_index[voice] = table_index;
	ctl->c_frac[voice] = (float)table_phase / (float)phase_inc_decimated;
	ctl->c_vscale[voice] = scale;
	scale = scale * ctl->c_scale_update;

    }

    /* save state */
    ctl->c_phase = phase;
    ctl->c_scale = scale;
}


/* the 2 oscillator version:
   the second osc can reset the first osc's phase (hence it determines the pitch)
   the first osc determines the waveform */

static void _bang_hardsync_phasor(t_bloscctl *ctl, float freq, float freq2)
{
    u32 phase = ctl->c_phase;
    u32 phase2 = ctl->c_phase2;
    u32 phase_inc; 
    u32 phase_inc2; 
    u32 oldphase;
    u32 oldphase2;
    int voice;
    float scale = ctl->c_scale;


    /* get increment */
    float inc = freq * ctl->c_phase_inc_scale;
    float inc2 = freq2 * ctl->c_phase_inc_scale;

    /* calculate new phases
       the increment (and the phase) should be a multiple of S */

    /* save previous phases */
    oldphase = phase;
    oldphase2 = phase2;

    /* update second osc */
    if (inc2 < 0.0f) inc2 = -inc2;
    phase_inc2 = ((u32)inc2) & ~(S-1);
    phase2 += phase_inc2;
    
    /* update first osc (freq should be >= freq of sync osc */
    if (inc < 0.0f) inc = -inc;
    phase_inc = ((u32)inc) & ~(S-1);
    if (phase_inc < phase_inc2) phase_inc = phase_inc2;
    phase += phase_inc;


    /* check for sync discontinuity (osc 2) */
    if (phase2 < oldphase2) {

	/* adjust phase depending on the location of the discontinuity in phase2:
	   phase/phase_inc == phase2/phase_inc2 */
	
	u64 pi = phase_inc >> LOVERSAMPLE;
	u64 pi2 = phase_inc2 >> LOVERSAMPLE;
	u64 lphase = ((u64)phase2 * pi) / pi2;
	phase = lphase & ~(S-1);
    }


    /* check for phase discontinuity (osc 1) */
    if (phase < oldphase){
	u32 phase_inc_decimated = phase_inc >> LOVERSAMPLE;
	u32 table_index;
	u32 table_phase;
	float stepsize;
	
	/* steal the oldest voice if we have a phase wrap */
	    
	voice = ctl->c_next_voice++;
	ctl->c_next_voice &= VOICES-1;
	    
	/* determine the location of the discontinuity (in oversampled coordinates)
	   which is S * (new phase) / (increment) */

	table_index = phase / phase_inc_decimated;
	    
	/* determine the fractional part (in oversampled coordinates)
	   for linear interpolation */

	table_phase = phase - (table_index * phase_inc_decimated);

	/* determine the step size
	   as opposed to saw/impulse waveforms, the step is not always equal to one. it is:
           oldphase - phase + phase_inc 
	   but for the unit step this will overflow to zero, so we
	   reduce the bit depth to prevent overflow */

	stepsize = _phase_to_float(((oldphase-phase) >> LOVERSAMPLE)
				   + phase_inc_decimated) * (float)S;
	    
	/* use it to initialize the new voice index and interpolation fraction */
	    
	ctl->c_index[voice] = table_index;
	ctl->c_frac[voice] = (float)table_phase / (float)phase_inc_decimated;
	ctl->c_vscale[voice] = scale * stepsize;
	scale = scale * ctl->c_scale_update;

    }

    /* save state */
    ctl->c_phase = phase;
    ctl->c_phase2 = phase2;
    ctl->c_scale = scale;
}


static t_int *blosc_perform_hardsync_saw(t_int *w)
{
    t_float *freq     = (float *)(w[3]);
    t_float *freq2     = (float *)(w[4]);
    t_float *out      = (float *)(w[5]);
    t_bloscctl *ctl  = (t_bloscctl *)(w[1]);
    t_int n           = (t_int)(w[2]);
    t_int i;

    /* set postfilter cutoff */
    ctl->c_butter->setButterHP(0.85f * (*freq / sys_getsr()));
    
    while (n--) {
	float frequency = *freq++;
	float frequency2 = *freq2++;

	/* get the bandlimited discontinuity */
	float sample = _get_bandlimited_discontinuity(ctl, bls);

	/* add aliased sawtooth wave */
	sample += _phase_to_float(ctl->c_phase) - 0.5f;

	/* highpass filter output to remove DC offset and low frequency aliasing */
	ctl->c_butter->BangSmooth(sample, sample, 0.05f);

	/* send to output */
	*out++ = sample;

	/* advance phasor */
	_bang_hardsync_phasor(ctl, frequency2, frequency);
	
    }
    
    return (w+6);
}

static t_int *blosc_perform_saw(t_int *w)
{
    t_float *freq     = (float *)(w[3]);
    t_float *out      = (float *)(w[4]);
    t_bloscctl *ctl  = (t_bloscctl *)(w[1]);
    t_int n           = (t_int)(w[2]);
    t_int i;
    
    while (n--) {
	float frequency = *freq++;

	/* get the bandlimited discontinuity */
	float sample = _get_bandlimited_discontinuity(ctl, bls);

	/* add aliased sawtooth wave */
	sample += _phase_to_float(ctl->c_phase) - 0.5f;

	/* send to output */
	*out++ = sample;

	/* advance phasor */
	_bang_phasor(ctl, frequency);
	
    }
    
    return (w+5);
}



static t_int *blosc_perform_pulse(t_int *w)
{
    t_float *freq     = (float *)(w[3]);
    t_float *out      = (float *)(w[4]);
    t_bloscctl *ctl  = (t_bloscctl *)(w[1]);
    t_int n           = (t_int)(w[2]);
    t_int i;


    /* set postfilter cutoff */
    ctl->c_butter->setButterHP(0.85f * (*freq / sys_getsr()));
    
    while (n--) {
	float frequency = *freq++;

	/* get the bandlimited discontinuity */
	float sample = _get_bandlimited_discontinuity(ctl, bli);

	/* highpass filter output to remove DC offset and low frequency aliasing */
	ctl->c_butter->BangSmooth(sample, sample, 0.05f);

	/* send to output */
	*out++ = sample;

	/* advance phasor */
	_bang_phasor(ctl, frequency);
	
    }
    
    return (w+5);
}

static t_int *blosc_perform_comparator(t_int *w)
{
    t_float *amp      = (float *)(w[3]);
    t_float *out      = (float *)(w[4]);
    t_bloscctl *ctl  = (t_bloscctl *)(w[1]);
    t_int n           = (t_int)(w[2]);
    t_int i;
    t_float prev_amp = ctl->c_prev_amp;
    
    while (n--) {
	float curr_amp = *amp++;

	/* exact zero won't work for zero detection (sic) */
	if (curr_amp == 0.0f) curr_amp = 0.0000001f;

	/* get the bandlimited discontinuity */
	float sample = _get_bandlimited_discontinuity(ctl, bls);

	/* add the block wave state */
	sample += ctl->c_state;

	/* send to output */
	*out++ = sample;

	/* advance phasor */
	_bang_comparator(ctl, prev_amp, curr_amp);

	prev_amp = curr_amp;
	
    }

    ctl->c_prev_amp = prev_amp;
    
    return (w+5);
}

static void blosc_phase(t_blosc *x, t_float f)
{
    x->x_ctl.c_phase = _float_to_phase(f);
    x->x_ctl.c_phase2 = _float_to_phase(f);
}

static void blosc_phase1(t_blosc *x, t_float f)
{
    x->x_ctl.c_phase = _float_to_phase(f);
}

static void blosc_phase2(t_blosc *x, t_float f)
{
    x->x_ctl.c_phase2 = _float_to_phase(f);
}

static void blosc_dsp(t_blosc *x, t_signal **sp)
{
  int n = sp[0]->s_n;

  /* set sampling rate scaling for phasors */
  x->x_ctl.c_phase_inc_scale = 4.0f * (float)(1<<(LPHASOR-2)) / sys_getsr();


  /* setup & register the correct process routine depending on the waveform */

  /* 2 osc */
  if (x->x_ctl.c_waveform == gensym("syncsaw")){
      x->x_ctl.c_scale = 1.0f;
      x->x_ctl.c_scale_update = 1.0f;
      dsp_add(blosc_perform_hardsync_saw, 5, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec);
  }

  /* 1 osc */
  else if (x->x_ctl.c_waveform == gensym("pulse")){
      x->x_ctl.c_scale = 1.0f;
      x->x_ctl.c_scale_update = 1.0f;
      dsp_add(blosc_perform_pulse, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
  }
  else if (x->x_ctl.c_waveform == gensym("pulse2")){
      x->x_ctl.c_phase_inc_scale *= 2;
      x->x_ctl.c_scale = 1.0f;
      x->x_ctl.c_scale_update = -1.0f;
      dsp_add(blosc_perform_pulse, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
  }
  else if (x->x_ctl.c_waveform == gensym("comparator")){
      x->x_ctl.c_scale = 1.0f;
      x->x_ctl.c_scale_update = 1.0f;
      dsp_add(blosc_perform_comparator, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
  }
  else{
       x->x_ctl.c_scale = 1.0f;
      x->x_ctl.c_scale_update = 1.0f;
      dsp_add(blosc_perform_saw, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
  }



}                                  
static void blosc_free(t_blosc *x)
{
    delete x->x_ctl.c_butter;
}

t_class *blosc_class;

static void *blosc_new(t_symbol *s)
{
    t_blosc *x = (t_blosc *)pd_new(blosc_class);
    int i;

    /* out 1 */
    outlet_new(&x->x_obj, gensym("signal"));

    /* optional signal inlets */
    if (s == gensym("syncsaw")){
	inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));  
    }

    /* optional phase inlet */
    if (s != gensym("comparator")){
	inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("phase"));  
    }

    /* create the postfilter */
    x->x_ctl.c_butter = new DSPIfilterSeries(3);

    /* init oscillators */
    for (i=0; i<VOICES; i++) {
      x->x_ctl.c_index[i] = N-2;
      x->x_ctl.c_frac[i] = 0.0f;
    }

    /* init rest of state data */
    blosc_phase(x, 0);
    blosc_phase2(x, 0);
    x->x_ctl.c_state = 0.0;
    x->x_ctl.c_prev_amp = 0.0;
    x->x_ctl.c_next_voice = 0;
    x->x_ctl.c_scale = 1.0f;
    x->x_ctl.c_scale_update = 1.0f;
    x->x_ctl.c_waveform = s;

    return (void *)x;
}







/* CLASS DATA INIT (tables) */


/* some vector ops */

/* clear a buffer */
static inline void _clear(float *array, int size)
{
  memset(array, 0, sizeof(float)*size);
}

/* compute complex log */
static inline void _clog(float *real, float *imag, int size)
{
    int k;
    for (k=0; k<size; k++){
	float r = real[k];
	float i = imag[k];
	float radius = sqrt(r*r+i*i);
	real[k] = log(radius);
	imag[k] = atan2(i,r);
    }
}

/* compute complex exp */
static inline void _cexp(float *real, float *imag, int size)
{
    int k;
    for (k=0; k<size; k++){
	float r = exp(real[k]);
	float i = imag[k];
	real[k] = r * cos(i);
	imag[k] = r * sin(i);
    }
}


/* compute fft */
static inline void _fft(float *real, float *imag, int size)
{
    int i;
    float scale = 1.0f / sqrt((float)size);
    for (i=0; i<size; i++){
	real[i] *= scale;
	imag[i] *= scale;
	// if (isnan(real[i])) post("fftpanic %d", i);
    }
    mayer_fft(size, real, imag);
}
/* compute ifft */
static inline void _ifft(float *real, float *imag, int size)
{
    int i;
    float scale = 1.0f / sqrt((float)size);
    for (i=0; i<size; i++){
	real[i] *= scale;
	imag[i] *= scale;
	// if (isnan(real[i])) post("ifftpanic %d", i);
    }
    mayer_ifft(size, real, imag);
}

/* convert an integer index to a phase: [0 -> pi, -pi -> 0] */
static inline float _i2theta(int i, int size){
    float p = 2.0f * M_PI * (float)i / (float)size;
    if (p >= M_PI) p -= 2.0f * M_PI;
    return p;
}


/* print matlab array */
static void _printm(float *array, char *name, int size)
{
    int i;
    fprintf(stderr, "%s = [", name);
    for (i=0; i<size; i++){
	fprintf(stderr, "%f;", array[i]);
    }
    fprintf(stderr, "];\n");
}

/* store oversampled waveform as decimated chunks */
static void _store_decimated(float *dst, float *src, float scale, int size)
{
    int i;
    for (i=0; i<size; i++){
	int offset = (i % S) * L;
	int index = i / S;
	dst[offset+index] = scale * src[i];
    }    

}

/* store waveform as one chunk */
static void _store(float *dst, float *src, float scale, int size)
{
    int i;
    for (i=0; i<size; i++){
	dst[i] = scale * src[i];
    }    

}

/* create a minimum phase bandlimited impulse */
static void build_tables(void)
{

  /* table size = M>=N (time padding to reduce time aliasing) */

  /* we work in the complex domain to eliminate the need to avoid
     negative spectral components */

    float real[M];
    float imag[M];
    float sum,scale;
    int i,j;


    /* create windowed sinc */
    _clear(imag, M); 
    real[0] = 1.0f;
    for (i=1; i<M; i++){
	float tw = _i2theta(i,M);
	float ts = tw * NBPERIODS * (float)(M) / (float)(N);

	/* sinc */
	real[i] = sin(ts)/ts;

	/* blackman window */
	real[i] *= 0.42f + 0.5f * (cos(tw)) + 0.08f * (cos(2.0f*tw));

	//real[i] *= 0.5f * (1.0f + WALPHA) + 0.5f * (1.0f - WALPHA) * (cos(tw)); 

	/* check for nan */
	//if (isnan(real[i])) post("sinc NaN panic %d", i);
	//if (isinf(real[i])) post("sinc Inf panic %d", i);

    }


    /* compute cepstrum */
    _fft(real, imag, M);
    _clog(real, imag, M);
    _ifft(real, imag, M);


    /* kill anti-causal part (contribution of non minimum phase zeros) */
    /* should we kill nyquist too ?? */
    for (i=M/2+1; i<M; i++){
	real[i] *= 0.0000f;
	imag[i] *= 0.0000f;
    }


    /* compute inverse cepstrum */
    _fft(real, imag, M);
    _cexp(real, imag, M);
    _ifft(real, imag, M);



    /* from here on, discard the padded part [N->M-1]
       and work with the first N samples */

    /* normalize impulse (integral = 1) */
    sum = 0.0f;
    for (i=0; i<N; i++){sum += real[i];}
    scale = 1.0f / sum;
    for (i=0; i<N; i++){real[i] *= scale;}


    /* store bli table */
    _store(bli, real, (float)S, N);
    //_printm(bli, "h", N);


    /* integrate impulse and invert to produce a step function
       from 1->0 */
    sum = 0.0f;
    for (i=0; i<N; i++){
	sum += real[i];
	real[i] = (1.0f - sum);
    }

    /* store decimated bls tables */
    _store(bls, real, 1.0f, N);


}

extern "C"
{
    void blosc_tilde_setup(void)
    {
	//post("blosc~ v0.1");
	
	build_tables();
	
	blosc_class = class_new(gensym("blosc~"), (t_newmethod)blosc_new,
				(t_method)blosc_free, sizeof(t_blosc), 0, A_DEFSYMBOL, A_NULL);
	CLASS_MAINSIGNALIN(blosc_class, t_blosc, x_f);
	class_addmethod(blosc_class, (t_method)blosc_dsp, gensym("dsp"), A_NULL); 
	class_addmethod(blosc_class, (t_method)blosc_phase, gensym("phase"), A_FLOAT, A_NULL); 
	class_addmethod(blosc_class, (t_method)blosc_phase2, gensym("phase2"), A_FLOAT, A_NULL); 

	
    }

}