1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
/*
* fdn.c - a feedback delay network (reverb tail)
* using a housholder reflection feedback matrix (In - 2/n 11T)
* Copyright (c) 2000-2003 by Tom Schouten
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* TODO: CLEAN UP THIS MESS
add delay time generation code
add prime calculation routine (for prime delay line lengths)
add more diffuse feedback matrix (hadamard)
check filtering code
*/
#include "extlib_util.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define FDN_MIN_DECAY_TIME .01f
/*
#define NBPRIMES
int prime[NBPRIMES];
static int isprime(int n)
{
int i=1;
int d,m,p;
while(1){
p = prime[i++];
m = n % p;
if (m == 0) return 0; // it is a prime
d = n / p;
if (d < p) return 1; // it is not a prime
}
}
static int initprimes(void)
{
int i, curprime;
prime[0] = 1;
prime[1] = 2;
curprime = 3;
for(i=2; i<NBPRIMES; i++){
while (!isprime(curprime)) curprime++;
prime[i] = curprime;
//printf("%d, ", curprime);
curprime++;
}
printf("\n");
return 0;
}
*/
//static int find_nearest_prime(int n){ return n;}
typedef struct fdnctl
{
t_int c_order; /* veelvoud van 4 */
t_int c_maxorder;
t_float c_leak;
t_float c_input;
t_float c_output;
t_float *c_buf;
t_float *c_gain_in;
t_float *c_gain_state;
t_float c_timehigh;
t_float c_timelow;
t_int *c_tap; /* cirular feed: N+1 pointers: 1 read, (N-1)r/w, 1 write */
t_float *c_length; /* delay lengths in ms */
t_int c_bufsize;
t_float c_fsample;
t_float *c_vector[2];
t_float *c_vectorbuffer;
t_int c_curvector;
} t_fdnctl;
typedef struct fdn
{
t_object x_obj;
t_float x_f;
t_fdnctl x_ctl;
} t_fdn;
static void fdn_order(t_fdn *x, t_int order){
if (order > x->x_ctl.c_maxorder) {
post("fdn: this should not happen (panic!) order %d "
"is larger than maxorder %d:",
order, x->x_ctl.c_maxorder );
exit(1);
}
x->x_ctl.c_order = order;
x->x_ctl.c_leak = -2./ order;
x->x_ctl.c_input = 1./ sqrt(order); //????????????????
}
static void fdn_print(t_fdn *x)
{
int i;
fprintf(stderr, "fdn: delay coefficients (ms)\n");
for (i=0;i<x->x_ctl.c_order;i++) {
fprintf(stderr, "%f ", x->x_ctl.c_length[i]);
}
fprintf(stderr, "\n");
}
static void fdn_reset(t_fdn *x)
{
int i;
if (x->x_ctl.c_buf)
memset(x->x_ctl.c_buf, 0, x->x_ctl.c_bufsize
* sizeof(float));
if (x->x_ctl.c_vectorbuffer)
memset(x->x_ctl.c_vectorbuffer,
0, x->x_ctl.c_maxorder * 2 * sizeof(float));
}
static t_int *fdn_perform(t_int *w)
{
t_float *in = (float *)(w[3]);
t_float *outr = (float *)(w[4]);
t_float *outl = (float *)(w[5]);
t_fdnctl *ctl = (t_fdnctl *)(w[1]);
t_int n = (t_int)(w[2]);
t_float input = ctl->c_input;
t_float output = ctl->c_output;
t_float *gain_in = ctl->c_gain_in;
t_float *gain_state = ctl->c_gain_state;
t_int order = ctl->c_order;
t_int *tap = ctl->c_tap;
t_float *buf = ctl->c_buf;
t_int mask = ctl->c_bufsize - 1;
t_int i,j;
t_float x,y,v,left,right,z;
t_float filt_in, filt_last;
t_float *cvec, *lvec;
t_float save;
for(i=0;i<n;i++){
x = *in++;
y = 0;
left = 0;
right = 0;
/* get temporary vector buffers */
cvec = ctl->c_vector[ctl->c_curvector];
lvec = ctl->c_vector[ctl->c_curvector ^ 1];
ctl->c_curvector ^= 1;
/* read input vector + get sum and left/right output*/
for(j=0;j<order;)
{
z = buf[tap[j]];
cvec[j] = z;
y += z;
left += z;
right += z;
j++;
z = buf[tap[j]];
cvec[j] = z;
y += z;
left -= z;
right += z;
j++;
z = buf[tap[j]];
cvec[j] = z;
y += z;
left += z;
right -= z;
j++;
z = buf[tap[j]];
cvec[j] = z;
y += z;
left -= z;
right -= z;
j++;
}
/* write output */
*outl++ = left;
*outr++ = right;
/* y == leak to all inputs */
y *= ctl->c_leak;
/* perform feedback */
/* todo: decouple feedback & permutation */
save = cvec[0];
for (j=0; j<order-1; j++){
cvec[j] = cvec[j+1] + y + x;
}
cvec[order-1] = save + y + x;
/* apply gain + store result vector in delay lines + increment taps*/
tap[0] = (tap[0]+1)&mask;
for(j=0;j<order;j++) {
save = gain_in[j] * cvec[j] + gain_state[j] * lvec[j];
save = IS_DENORMAL(save) ? 0 : save;
cvec[j] = save;
buf[tap[j+1]] = save;
tap[j+1] = (tap[j+1] + 1) & mask;
}
}
return (w+6);
}
static void fdn_dsp(t_fdn *x, t_signal **sp)
{
x->x_ctl.c_fsample = sp[0]->s_sr;
dsp_add(fdn_perform,
5,
&x->x_ctl,
sp[0]->s_n,
sp[0]->s_vec,
sp[1]->s_vec,
sp[2]->s_vec);
}
static void fdn_free(t_fdn *x)
{
if ( x->x_ctl.c_tap) free( x->x_ctl.c_tap);
if ( x->x_ctl.c_length) free( x->x_ctl.c_length);
if ( x->x_ctl.c_gain_in) free( x->x_ctl.c_gain_in);
if ( x->x_ctl.c_gain_state) free( x->x_ctl.c_gain_state);
if ( x->x_ctl.c_buf) free ( x->x_ctl.c_buf);
if ( x->x_ctl.c_vectorbuffer) free ( x->x_ctl.c_vectorbuffer );
}
/*
each delay line is filtered with a first order iir filter:
(gl: dc gain, gh: ny gain)
H(z) = 2 gl gh / (gl + gh - z^-1 (gl - gh))
this results in the difference equation
yk = (2 gl gh ) / (gl + gh) x + (gl - gh) / (gl + gh) yk-1
*/
static void fdn_time(t_fdn *x, t_float timelow, t_float timehigh){
t_float elow, ehigh;
t_int i;
t_float gainlow, gainhigh, gainscale;
if (timelow < FDN_MIN_DECAY_TIME) timelow = FDN_MIN_DECAY_TIME;
if (timehigh < FDN_MIN_DECAY_TIME) timehigh = FDN_MIN_DECAY_TIME;
elow = -.003 / (timelow);
ehigh = -.003 / (timehigh);
/* setup gains */
for(i=0;i<x->x_ctl.c_order;i++){
gainlow = pow(10, elow * (x->x_ctl.c_length[i]));
gainhigh = pow(10, ehigh * (x->x_ctl.c_length[i]));
gainscale = 1.0f / (gainlow + gainhigh);
x->x_ctl.c_gain_in[i] = 2.0f * gainlow * gainhigh * gainscale;
x->x_ctl.c_gain_state[i] = (gainlow - gainhigh) * gainscale;
}
x->x_ctl.c_timehigh = timehigh;
x->x_ctl.c_timelow = timelow;
}
static void fdn_updatedamping(t_fdn *x)
{
fdn_time(x, x->x_ctl.c_timelow, x->x_ctl.c_timehigh);
}
static void fdn_timelow(t_fdn *x, t_float f){
x->x_ctl.c_timelow = fabs(f);
fdn_updatedamping(x);
}
static void fdn_timehigh(t_fdn *x, t_float f){
x->x_ctl.c_timehigh = fabs(f);
fdn_updatedamping(x);
}
static void fdn_setupdelayline(t_fdn *x){
int sum, t, n;
int mask = x->x_ctl.c_bufsize - 1;
int start = x->x_ctl.c_tap[0];
int *tap = x->x_ctl.c_tap;
float *length = x->x_ctl.c_length;
float scale = sys_getsr() * .001f;
sum = 0;
tap[0] = (start & mask);
for (t=1; t<= x->x_ctl.c_order; t++){
sum += (int)(length[t-1] * scale);
tap[t]=(start+sum)&mask;
}
if (sum > mask){
post("fdn: warning: not enough delay memory, behaviour "
"is undefined (this could lead to instability...)");
}
}
static void fdn_list (t_fdn *x, t_symbol *s, int argc, t_atom *argv){
int i;
float l;
int sum=0;
int order = argc & 0xfffffffc;
if (order < 4) return;
if (order > x->x_ctl.c_maxorder) return;
fdn_order(x, order);
for(i=0; i<order; i++)
if (argv[i].a_type == A_FLOAT) x->x_ctl.c_length[i] = argv[i].a_w.w_float;
fdn_setupdelayline(x);
fdn_updatedamping(x);
}
static void fdn_linear(t_fdn *x, t_float forder, t_float min, t_float max)
{
t_int order = ((int)forder) & 0xfffffffc;
t_float length, inc;
t_int i;
if (order < 4) return;
if (order > x->x_ctl.c_maxorder) return;
if (min <= 0) return;
if (max <= 0) return;
inc = (max - min) / (float)(order - 1);
length = min;
for (i=0; i<order; i++){
x->x_ctl.c_length[i] = length;
length += inc;
}
fdn_order(x, order);
fdn_setupdelayline(x);
fdn_updatedamping(x);
}
static void fdn_exponential(t_fdn *x, t_float forder, t_float min, t_float max)
{
t_int order = ((int)forder) & 0xfffffffc;
t_float length, inc;
t_int i;
if (order < 4) return;
if (order > x->x_ctl.c_maxorder) return;
if (min <= 0) return;
if (max <= 0) return;
inc = pow (max / min, 1.0f / ((float)(order - 1)));
length = min;
for (i=0; i<order; i++){
x->x_ctl.c_length[i] = length;
length *= inc;
}
fdn_order(x, order);
fdn_setupdelayline(x);
fdn_updatedamping(x);
}
t_class *fdn_class;
static void *fdn_new(t_floatarg maxiorder, t_floatarg maxibufsize)
{
t_int order = maxiorder;
t_int bufround;
t_fdn *x = (t_fdn *)pd_new(fdn_class);
t_float scale = sys_getsr() * .001f;
t_int bufsize = (t_int)(scale * maxibufsize);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("timelow"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("timehigh"));
outlet_new(&x->x_obj, gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
/* init data */
if (order < 4) order = 8;
if (bufsize < 64) bufsize = 65536;
bufround = 1;
while (bufround < bufsize) bufround *= 2;
bufsize = bufround;
post("fdn: maximum nb of delay lines %d, total buffer "
"size %d samples (%f seconds)",
order, bufsize, ((float)bufsize) / sys_getsr());
x->x_ctl.c_maxorder = order;
x->x_ctl.c_buf = (float *)malloc(sizeof(float) * bufsize);
x->x_ctl.c_bufsize = bufsize;
x->x_ctl.c_fsample = sys_getsr();
x->x_ctl.c_tap = (t_int *)malloc((order + 1) * sizeof(t_int));
x->x_ctl.c_length = (t_float *)malloc(order * sizeof(t_int));
x->x_ctl.c_gain_in = (t_float *)malloc(order * sizeof(t_float));
x->x_ctl.c_gain_state = (t_float *)malloc(order * sizeof(t_float));
x->x_ctl.c_vectorbuffer = (t_float *)malloc(order * 2 * sizeof(float));
memset(x->x_ctl.c_vectorbuffer, 0, order * 2 * sizeof(float));
x->x_ctl.c_curvector = 0;
x->x_ctl.c_vector[0] = &x->x_ctl.c_vectorbuffer[0];
x->x_ctl.c_vector[1] = &x->x_ctl.c_vectorbuffer[order];
/* preset */
fdn_order(x,8);
x->x_ctl.c_length[0]= 29.0f;
x->x_ctl.c_length[1]= 31.0f;
x->x_ctl.c_length[2]= 37.0f;
x->x_ctl.c_length[3]= 67.0f;
x->x_ctl.c_length[4]= 82.0f;
x->x_ctl.c_length[5]= 110.0f;
x->x_ctl.c_length[6]= 172.0f;
x->x_ctl.c_length[7]= 211.0f;
fdn_setupdelayline(x);
fdn_time(x, 4, 1);
/* reset delay memory to zero */
fdn_reset(x);
return (void *)x;
}
void fdn_tilde_setup(void)
{
//post("fdn~ v0.1");
fdn_class = class_new(gensym("fdn~"), (t_newmethod)fdn_new,
(t_method)fdn_free, sizeof(t_fdn), 0, A_DEFFLOAT, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(fdn_class, t_fdn, x_f);
class_addmethod(fdn_class, (t_method)fdn_print, gensym("print"), 0);
class_addmethod(fdn_class, (t_method)fdn_reset, gensym("reset"), 0);
class_addmethod(fdn_class, (t_method)fdn_timehigh,
gensym("timehigh"), A_DEFFLOAT, 0);
class_addmethod(fdn_class, (t_method)fdn_timelow,
gensym("timelow"), A_DEFFLOAT, 0);
class_addmethod(fdn_class, (t_method)fdn_list, gensym("lines"), A_GIMME, 0);
class_addmethod(fdn_class, (t_method)fdn_dsp, gensym("dsp"), 0);
class_addmethod(fdn_class, (t_method)fdn_linear,
gensym("linear"), A_FLOAT, A_FLOAT, A_FLOAT, 0);
class_addmethod(fdn_class, (t_method)fdn_exponential,
gensym("exponential"), A_FLOAT, A_FLOAT, A_FLOAT, 0);
}
|