1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
/*
* sbosc.c - smallband oscillator. periodic, linear interpolated frequency center.
* data organization is in (real, imag) pairs
* the first 2 components are (DC, NY)
* Copyright (c) 2000-2003 by Tom Schouten
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "m_pd.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define LOGTABSIZE 10
#define TABSIZE (1<<LOGTABSIZE)
#define MASKTABSIZE (TABSIZE-1)
#define SHIFTTABSIZE ((sizeof(unsigned int) * 8) - LOGTABSIZE)
#define FRACTABSIZE (1<<SHIFTTABSIZE)
#define INVFRACTABSIZE (1.0f / (float)(FRACTABSIZE))
#define MASKFRACTABSIZE (FRACTABSIZE-1)
#define PITCHLIMIT 20.0f
static float costable[TABSIZE];
static inline void _exp_j2pi(unsigned int t, float *real, float *imag)
{
unsigned int i1 = t >> SHIFTTABSIZE;
float f2 = (t & MASKFRACTABSIZE) * INVFRACTABSIZE;
unsigned int i2 = (i1+1) & MASKTABSIZE;
unsigned int i3 = (i1 - (TABSIZE>>2)) & MASKTABSIZE;
unsigned int i4 = (i2 + 1 - (TABSIZE>>2)) & MASKTABSIZE;
float f1 = 1.0f - f2;
float a1 = f1 * costable[i1];
float a2 = f2 * costable[i2];
float b1 = f1 * costable[i3];
float b2 = f2 * costable[i4];
*real = a1 + a2;
*imag = b1 + b2;
}
static t_class *sbosc_tilde_class;
typedef struct _sbosc_tilde
{
t_object x_obj;
float x_f;
/* state vars */
unsigned int x_phase; // phase of main pitch osc
unsigned int x_phase_inc; // frequency of main pitch osc
unsigned int x_harmonic; // first harmonic
float x_frac; // fraction of first harmonic
} t_sbosc_tilde;
static void *sbosc_tilde_new(void)
{
t_sbosc_tilde *x = (t_sbosc_tilde *)pd_new(sbosc_tilde_class);
x->x_phase = 0;
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("phase"));
outlet_new(&x->x_obj, gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
x->x_f = 0;
return (x);
}
static t_int *sbosc_tilde_perform(t_int *w)
{
t_sbosc_tilde *x = (t_sbosc_tilde *)(w[1]);
t_float *pitch = (t_float *)(w[2]);
t_float *center= (t_float *)(w[3]);
t_float *out_real = (t_float *)(w[4]);
t_float *out_imag = (t_float *)(w[5]);
int n = (int)(w[6]);
int i;
t_float pitch_to_phase = 4294967295.0f / sys_getsr();
for (i = 0; i < n; i++)
{
float p = *pitch++;
float c = *center++;
float r1,r2,i1,i2;
/* compute harmonic mixture */
unsigned int h1 = x->x_phase * x->x_harmonic;
unsigned int h2 = h1 + x->x_phase;
_exp_j2pi(h1, &r1, &i1);
_exp_j2pi(h2, &r2, &i2);
r1 *= x->x_frac;
i1 *= x->x_frac;
r2 *= 1.0f - x->x_frac;
i2 *= 1.0f - x->x_frac;
*out_real++ = r1 + r2;
*out_imag++ = i1 + i2;
x->x_phase += x->x_phase_inc;
/* check for phase wrap & update osc */
if ((x->x_phase <= x->x_phase_inc))
{
float p_plus = (p < 0.0f) ? -p : p;
float p_limit = (p_plus < PITCHLIMIT) ? PITCHLIMIT : p_plus;
float c_plus = (c < 0.0f) ? -c : c;
float harmonic = c_plus/p_limit;
x->x_phase_inc = pitch_to_phase * p_limit;
x->x_harmonic = harmonic;
x->x_frac = 1.0f - (harmonic - x->x_harmonic);
}
}
return (w+7);
}
static void sbosc_tilde_dsp(t_sbosc_tilde *x, t_signal **sp)
{
dsp_add(sbosc_tilde_perform, 6, x,
sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n);
}
static void sbosc_tilde_free(t_sbosc_tilde *x)
{
}
static void sbosc_tilde_phase(t_sbosc_tilde *x, t_floatarg f)
{
x->x_phase = f * (1.0f / 4294967295.0f);
}
void sbosc_tilde_setup(void)
{
int i;
// init tables
for (i=0; i<TABSIZE; i++)
costable[i] = cos(2.0 * M_PI * (double)i / (double)TABSIZE);
// class setup
sbosc_tilde_class = class_new(gensym("sbosc~"),
(t_newmethod)sbosc_tilde_new, (t_method)sbosc_tilde_free,
sizeof(t_sbosc_tilde), 0, A_DEFSYM, 0);
CLASS_MAINSIGNALIN(sbosc_tilde_class, t_sbosc_tilde, x_f);
class_addmethod(sbosc_tilde_class, (t_method)sbosc_tilde_dsp,
gensym("dsp"), 0);
class_addmethod(sbosc_tilde_class, (t_method)sbosc_tilde_phase,
gensym("phase"), A_FLOAT, 0);
}
|