1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/*
* xfm.c - cross frequency modulation object
* Copyright (c) 2000-2003 by Tom Schouten
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
coupled fm. osc state equations:
phasor for system i =
[ 1 -phi ]
(1+phi^2)^(1/2) * [ phi 1 ]
with phi = 2*pi*(freq_base + freq_mod * out_other) / sr
ideal phasor would be
[ cos(phi) - sin(phi) ]
[ sin(phi) cos(phi) ]
this means frequencies are warped:
2*pi*f_real = atan(2*pi*f)
some (possible) enhancements:
+ add an integrator to get phase modulation
+ undo the frequency warping
*/
#include "m_pd.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define SINSAMPLES 512
#define MYPI 3.1415927
#define DISTORTED 0
#define NORMALIZED 1
typedef struct xfmctl
{
//t_float c_sintab[SINSAMPLES + 1];
t_float c_x1, c_y1; /* state osc 1 */
t_float c_x2, c_y2; /* state osc 2 */
t_int c_type; /* type of algo */
} t_xfmctl;
typedef struct xfm
{
t_object x_obj;
t_float x_f;
t_xfmctl x_ctl;
} t_xfm;
void xfm_type(t_xfm *x, t_float f)
{
int t = (int)f;
if (t == DISTORTED) x->x_ctl.c_type = t;
if (t == NORMALIZED) x->x_ctl.c_type = t;
}
static inline t_float xfm_sat(t_float x)
{
const float max = 1;
const float min = -1;
x = (x > max) ? (max) : (x);
x = (x < min) ? (min) : (x);
return(x);
}
static t_int *xfm_perform(t_int *w)
{
t_float *inA = (float *)(w[3]);
t_float *inB = (float *)(w[4]);
t_float *fbA = (float *)(w[5]);
t_float *fbB = (float *)(w[6]);
t_float *outA = (float *)(w[7]);
t_float *outB = (float *)(w[8]);
t_xfmctl *ctl = (t_xfmctl *)(w[1]);
t_int n = (t_int)(w[2]);
//t_float *tab = ctl->c_sintab;
t_float x1 = ctl->c_x1, y1 = ctl->c_y1, z1, dx1, dy1, inv_norm1;
t_float x2 = ctl->c_x2, y2 = ctl->c_y2, z2, dx2, dy2, inv_norm2;
t_float scale = 2 * M_PI / sys_getsr();
t_int i;
switch(ctl->c_type){
default:
case DISTORTED:
/* this is a 4 degree of freedom hyperchaotic system */
/* two coupled saturated unstable oscillators */
for (i=0; i<n; i++){
/* osc 1 */
z1 = scale * (x2 * (*fbA++) + (*inA++));
dx1 = x1 - z1*y1;
dy1 = y1 + z1*x1;
x1 = xfm_sat(dx1);
y1 = xfm_sat(dy1);
/* osc 2*/
z2 = scale * (x1 * (*fbB++) + (*inB++));
dx2 = x2 - z2*y2;
dy2 = y2 + z2*x2;
x2 = xfm_sat(dx2);
y2 = xfm_sat(dy2);
/* output */
(*outA++) = x1;
(*outB++) = x2;
}
break;
case NORMALIZED:
/* this is a an effective 2 degree of freedom quasiperiodic system */
/* two coupled stable oscillators */
for (i=0; i<n; i++){
/* osc 1 */
z1 = scale * (x2 * (*fbA++) + (*inA++));
dx1 = x1 - z1*y1;
dy1 = y1 + z1*x1;
inv_norm1 = 1.0f / hypot(dx1, dy1);
/* osc 2*/
z2 = scale * (x1 * (*fbB++) + (*inB++));
dx2 = x2 - z2*y2;
dy2 = y2 + z2*x2;
inv_norm2 = 1.0f / hypot(dx2, dy2);
/* renormalize */
x1 = dx1 * inv_norm1;
y1 = dy1 * inv_norm1;
x2 = dx2 * inv_norm2;
y2 = dy2 * inv_norm2;
/* output */
(*outA++) = x1;
(*outB++) = x2;
}
break;
}
ctl->c_x1 = x1;
ctl->c_y1 = y1;
ctl->c_x2 = x2;
ctl->c_y2 = y2;
return (w+9);
}
static void xfm_dsp(t_xfm *x, t_signal **sp)
{
int n = sp[0]->s_n;
int k;
dsp_add(xfm_perform,
8,
&x->x_ctl,
sp[0]->s_n,
sp[0]->s_vec,
sp[1]->s_vec,
sp[2]->s_vec,
sp[3]->s_vec,
sp[4]->s_vec,
sp[5]->s_vec);
}
static void xfm_free(t_xfm *x)
{
}
static void xfm_reset(t_xfm *x)
{
x->x_ctl.c_x1 = 1;
x->x_ctl.c_y1 = 0;
x->x_ctl.c_x2 = 1;
x->x_ctl.c_y2 = 0;
}
t_class *xfm_class;
static void *xfm_new(t_floatarg algotype)
{
t_xfm *x = (t_xfm *)pd_new(xfm_class);
/* ins */
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));
/* outs */
outlet_new(&x->x_obj, gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
/* init data */
xfm_reset(x);
xfm_type(x, algotype);
return (void *)x;
}
void xfm_tilde_setup(void)
{
//post("xfm~ v0.1");
xfm_class = class_new(gensym("xfm~"), (t_newmethod)xfm_new,
(t_method)xfm_free, sizeof(t_xfm), 0, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(xfm_class, t_xfm, x_f);
class_addmethod(xfm_class, (t_method)xfm_type, gensym("type"), A_FLOAT, 0);
class_addmethod(xfm_class, (t_method)xfm_dsp, gensym("dsp"), 0);
class_addmethod(xfm_class, (t_method)xfm_reset, gensym("reset"), 0);
}
|