/*
cw_binaural~: a binaural synthesis external for pure data
by David Doukhan - david.doukhan@gmail.com - http://perso.limsi.fr/doukhan
and Anne Sedes - sedes.anne@gmail.com
Copyright (C) 2009-2011 David Doukhan and Anne Sedes
For more details, see CW_binaural~, a binaural synthesis external for Pure Data
David Doukhan and Anne Sedes, PDCON09
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include "hrtfcont.hpp"
#include "logstring.hpp"
#define DEG2RAD (M_PI/180)
#define RAD2DEG (180/M_PI)
#define EPS 0.0000000000001
HrtfCont::HrtfCont(const ir_key& k):
_vert_pol_coords(k.vertical_polar_coords) {}
// set elevation in [-90, +90], and azimuth in [-180, 180[
void HrtfCont::normalize_vertpolar_coords(float& azimuth, float& elevation) const
{
// convert any elevation into a usefull value
// the value used should lie between -90 and +90
elevation = fmod(elevation, 360);
if (elevation < 0)
elevation += 360;
if (elevation > 270)
elevation -= 360;
else if (elevation > 90)
{
elevation = 180 - elevation;
azimuth += 180;
}
// azimuth values should be in [0,360[
azimuth = fmod(azimuth, 360);
if (azimuth < -180)
azimuth += 360;
else if (azimuth >= 180)
azimuth -= 360;
}
// return the distance in degree between 2 normalized angles
// ie both angles are in [0, 360[
float HrtfCont::angular_dist(float a1, float a2) const
{
float d = fabs(a1-a2);
return d <= 180 ? d : 360 - d;
}
// iangle1, iangle2
void HrtfCont::add_a2_candidates(interp_cdts& ic, float a1_key, float a2, float weight)
{
// get impulse responses corresponding to the current elevation
const angle2_cont& a2_candidates = _m[a1_key];
//slog << "interp for fixed angle1=" << a1_key << ", optimal angle2="<< a2<< ", weight=" << weight << endl;
// there is only one angle2 measure at index angle1
if (a2_candidates.size() == 1)
return ic.add(a1_key, a2_candidates.begin()->first, weight);
// iterator the the 1st element of key bigger or equal
angle2_cit supeq_a2it = a2_candidates.lower_bound(a2);
// the requested angle2 corresponds exactly to an available measure
if (supeq_a2it != a2_candidates.end() && a2 == supeq_a2it->first)
return ic.add(a1_key, supeq_a2it->first, weight);
// index candidates for angle2
float a2_cand1, a2_cand2;
if (supeq_a2it == a2_candidates.end() || supeq_a2it == a2_candidates.begin())
{
//slog << "angle2 btwn 2 extremes" << (supeq_a2it == a2_candidates.end()) << (supeq_a2it == a2_candidates.begin()) << endl;
// requested angle2 is bigger than all available measures
// or smaller than all available measures
// interpolation between extreme measures can be done
// since angle2 is in [-180, 180[
a2_cand1 = a2_candidates.begin()->first;
supeq_a2it = a2_candidates.end();
advance(supeq_a2it, -1);
a2_cand2 = supeq_a2it->first;
}
else
{
// general case
//slog << "angle2 interp general case" << endl;
a2_cand1 = supeq_a2it->first;
advance(supeq_a2it, -1);
a2_cand2 = supeq_a2it->first;
}
// angular distance between the 2 candidates
float a2_cands_dist = angular_dist(a2_cand1, a2_cand2);
// weight of the second candidate
float a2_cand2_weight = angular_dist(a2, a2_cand1) / a2_cands_dist;
//slog << "dist between a2 candidates" << a2_cands_dist << endl;
//slog << "angular_dist(a2, a2_cand1)" << angular_dist(a2, a2_cand1) << endl;
// add 2 candidates
ic.add(a1_key, a2_cand1, weight * (1-a2_cand2_weight));
ic.add(a1_key, a2_cand2, weight * a2_cand2_weight);
}
void HrtfCont::set_candidates(interp_cdts& ic, float az, float el)
{
// assumption: ic.size == 0, and map size != 0, not checked for RT issues :-(
// index angles in the hrtf map
float iangle1, iangle2;
//slog << "set candidates az:" << az << ", el:" << el << endl;
// get the angular indexes expressed in the coordianates of the HRTF db to use
if (_vert_pol_coords)
{
// Database using vertical polar coordinates
normalize_vertpolar_coords(az, el);
iangle1 = el;
iangle2 = az;
}
else
{
// Database using interaural polar coordiantes
vertpol2interaurpol(az,el);
iangle1 = az;
iangle2 = el;
}
//slog << "indexes " << iangle1 << ", " << iangle2 << endl;
// there is only one available value for first index
if (_m.size() == 1)
return add_a2_candidates(ic, _m.begin()->first, iangle2, 1);
// get the first index value >= iangle1
angle1_cit supeq_a1it = _m.lower_bound(iangle1);
// the requested angle1 corresponds exactly to an indexed element
if (supeq_a1it != _m.end() && iangle1 == supeq_a1it->first)
return add_a2_candidates(ic, iangle1, iangle2, 1);
if (supeq_a1it == _m.begin() || supeq_a1it == _m.end())
{
// requested angle1 is strictly smaller than
// the smallest index of the database
// or strictly bigger than the biggest index of the db
float range_without_measures;
float w2;
if (supeq_a1it == _m.end())
{
// requested index1 is bigger than available indexes
advance(supeq_a1it, -1);
range_without_measures = 2*(90 - supeq_a1it->first);
w2 = iangle1 - supeq_a1it->first;
}
else
{
// requested index1 is smaller than available indexes
range_without_measures = -2*(-90 - supeq_a1it->first);
w2 = supeq_a1it->first - iangle1;
}
w2 /= range_without_measures;
add_a2_candidates(ic, supeq_a1it->first, iangle2, 1-w2);
iangle2 = iangle2 > 0 ? iangle2 - 180 : iangle2 + 180;
add_a2_candidates(ic, supeq_a1it->first, iangle2, w2);
}
else
{
// general case: intepolation using 2 different indexed elements
float index1_candidate1, index1_candidate2;
index1_candidate2 = supeq_a1it->first;
advance(supeq_a1it, -1);
index1_candidate1 = supeq_a1it->first;
// distance between index1 candidates. NB: candidate 2 is bigger than candidate 1!
float dcands = index1_candidate2 - index1_candidate1;
add_a2_candidates(ic, index1_candidate2, iangle2, (iangle1-index1_candidate1)/dcands);
add_a2_candidates(ic, index1_candidate1, iangle2, (index1_candidate2-iangle1)/dcands);
}
}
// TODO: could be optimized using templates
void HrtfCont::update_from_candidates(const interp_cdts& ic, float* left, float* right)
{
//slog << "update from candidates " << left << right << endl;
const float *lc, *rc;
float wc;
ir_buffer* irb;
irb = &(_m[ic.angle_index1[0]][ic.angle_index2[0]]);
//slog << ic.angle_index1[0] << " " << ic.angle_index2[0] << " " << irb->fname << endl;
// return;
wc = ic.weight[0];
lc = irb->lbuf;
rc = irb->rbuf;
//slog << "update from " << _m[ic.angle_index1[0]][ic.angle_index2[0]].fname << " " << wc << endl;
//slog << lc << rc << left << right << endl;
for (size_t i = 0; i < _ir_length; ++i)
{
left[i] = wc * lc[i];
right[i] = wc * rc[i];
}
for (size_t icand = 1; icand < ic.size; ++icand)
{
irb = &(_m[ic.angle_index1[icand]][ic.angle_index2[icand]]);
wc = ic.weight[icand];
//slog << "update from " << _m[ic.angle_index1[icand]][ic.angle_index2[icand]].fname << " " << wc << endl;
lc = irb->lbuf;
rc = irb->rbuf;
for (size_t i = 0; i < _ir_length; ++i)
{
left[i] += wc * lc[i];
right[i] += wc * rc[i];
}
}
// slog << "endof candidate update" << endl;
}
// convert an azimuth/elevation couple expressed in
// vertical polar coordinates to interaural polar coordinates
void HrtfCont::vertpol2interaurpol(float& az, float& el) const
{
const float raz = az * DEG2RAD;
const float rel = el * DEG2RAD;
const float cosaz = cos(raz);
const float sinaz = sin(raz);
const float cosel = cos(rel);
const float sinel = sin(rel);
const float cosazcosel = cosaz * cosel;
el = atan2(sinel, cosazcosel) * RAD2DEG;
az = atan2(cosel * sinaz, sqrt(cosazcosel * cosazcosel + sinel*sinel)) * RAD2DEG;
}